Cellular and Molecular Neurobiology

, Volume 37, Issue 4, pp 683–693 | Cite as

Up-regulation of MCM3 Relates to Neuronal Apoptosis After Traumatic Brain Injury in Adult Rats

  • Wei Ji
  • Hanzhang Liu
  • Chun Liu
  • Lifei shao
  • Yuankun Liu
  • Shaochen Fan
  • Xiaohong Li
  • Lei lei Gong
  • Shunxing Zhu
  • Yilu Gao
Original Research

Abstract

Minichromosome maintenance complex component 3, one of the minichromosome maintenance proteins, functions as a part of pre-replication complex to initiate DNA replication in eukaryotes. Minichromosome maintenance complex component 3 (MCM3) was mainly implied in cell proliferation and tumorigenesis. In addition, MCM3 might play an important role in neuronal apoptosis. However, the functions of MCM3 in central nervous system are still with limited acquaintance. In this study, we performed a traumatic brain injury (TBI) model in adult rats. Western blot and immunohistochemistry staining showed up-regulation of MCM3 in the peritrauma brain cortex. The expression patterns of active caspase-3 and Bax, Bcl-2 were parallel with that of MCM3. Immunofluorescent staining and terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling suggested that MCM3 was involved in neuronal apoptosis. In conclusion, our data indicated that MCM3 might play an important role in neuronal apoptosis following TBI. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against TBI.

Keywords

MCM3 Active caspase-3 BAX/Bcl-2 Neuronal apoptosis TBI 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81371335, 81200918).

Compliance with Ethical Standards

Conflict of Interest

No potential conflicts of interest were disclosed.

References

  1. Becker EB, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72(1):1–25CrossRefPubMedGoogle Scholar
  2. Bhuiyan MS, Fukunaga K (2008) Activation of HtrA2, a mitochondrial serine protease mediates apoptosis: current knowledge on HtrA2 mediated myocardial ischemia/reperfusion injury. Cardiovasc Ther 26(3):224–232CrossRefPubMedGoogle Scholar
  3. Bochman ML, Schwacha A (2009) The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 73(4):652–683CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bochman ML, Bell SP, Schwacha A (2008) Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability. Mol Cell Biol 28(19):5865–5873CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37(3):299–310CrossRefPubMedPubMedCentralGoogle Scholar
  6. Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci USA 102(23):8333–8338CrossRefPubMedPubMedCentralGoogle Scholar
  7. Forsburg SL (2004) Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev 68(1):109–131CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ghajar J (2000) Traumatic brain injury. Lancet 356(9233):923–929CrossRefPubMedGoogle Scholar
  9. Greene LA, Liu DX, Troy CM, Biswas SC (2007) Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim Biophys Acta 1772(4):392–401CrossRefPubMedGoogle Scholar
  10. Herrup K, Busser JC (1995) The induction of multiple cell cycle events precedes target-related neuronal death. Development 121(8):2385–2395PubMedGoogle Scholar
  11. Hoh NZ, Wagner AK, Alexander SA, Clark RB, Beers SR, Okonkwo DO, Ren D, Conley YP (2010) BCL2 genotypes: functional and neurobehavioral outcomes after severe traumatic brain injury. J Neurotrauma 27(8):1413–1427CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ino H, Chiba T (2001) Cyclin-dependent kinase 4 and cyclin D1 are required for excitotoxin-induced neuronal cell death in vivo. J Neurosci 21(16):6086–6094PubMedGoogle Scholar
  13. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95(9):4997–5002CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kan EM, Ling EA, Lu J (2012) Microenvironment changes in mild traumatic brain injury. Brain Res Bull 87(4–5):359–372CrossRefPubMedGoogle Scholar
  15. Kernie SG, Erwin TM, Parada LF (2001) Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neurosci Res 66(3):317–326CrossRefPubMedGoogle Scholar
  16. Konigsmark BW, Murphy EA (1970) Neuronal populations in the human brain. Nature. 228(5278):1335–1336CrossRefPubMedGoogle Scholar
  17. Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288(5471):1643–1647CrossRefPubMedGoogle Scholar
  18. Lam SK, Ma X, Sing TL, Shilton BH, Brandl CJ, Davey MJ (2013) The PS1 hairpin of Mcm3 is essential for viability and for DNA unwinding in vitro. PLoS One 8(12):e82177CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lin DI, Aggarwal P, Diehl JA (2008) Phosphorylation of MCM3 on Ser-112 regulates its incorporation into the MCM2-7 complex. Proc Natl Acad Sci USA 105(23):8079–8084CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu Y, Wang Y, Cheng C, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q, Shen A (2010) A relationship between p27(kip1) and Skp2 after adult brain injury: implications for glial proliferation. J Neurotrauma 27(2):361–371CrossRefPubMedGoogle Scholar
  21. Loane DJ, Faden AI (2010) Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31(12):596–604CrossRefPubMedPubMedCentralGoogle Scholar
  22. Logan A, Frautschy SA, Gonzalez AM, Baird A (1992) A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury. J Neurosci 12(10):3828–3837PubMedPubMedCentralGoogle Scholar
  23. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7(8):728–741CrossRefPubMedGoogle Scholar
  24. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21(1):92–101CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21(4):581–587CrossRefPubMedGoogle Scholar
  26. Park DS, Obeidat A, Giovanni A, Greene LA (2000) Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiol Aging 21(6):771–781CrossRefPubMedGoogle Scholar
  27. Plesnila N, von Baumgarten L, Retiounskaia M, Engel D, Ardeshiri A, Zimmermann R, Hoffmann F, Landshamer S, Wagner E, Culmsee C (2007) Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ 14(8):1529–1541CrossRefPubMedGoogle Scholar
  28. Sakurai M, Hayashi T, Abe K, Itoyama Y, Tabayashi K, Rosenblum WI (2000) Cyclin D1 and Cdk4 protein induction in motor neurons after transient spinal cord ischemia in rabbits. Stroke 31(1):200–207CrossRefPubMedGoogle Scholar
  29. Schories B, Engel K, Dorken B, Gossen M, Bommert K (2004) Characterization of apoptosis-induced Mcm3 and Cdc6 cleavage reveals a proapoptotic effect for one Mcm3 fragment. Cell Death Differ 11(8):940–942CrossRefPubMedGoogle Scholar
  30. Stoica BA, Faden AI (2010) Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 7(1):3–12CrossRefPubMedPubMedCentralGoogle Scholar
  31. Stoica BA, Byrnes KR, Faden AI (2009) Cell cycle activation and CNS injury. Neurotox Res 16(3):221–237CrossRefPubMedGoogle Scholar
  32. Verdaguer E, Garcia-Jorda E, Canudas AM, Dominguez E, Jimenez A, Pubill D, Escubedo E, Pallas JC, Camins A (2002) Kainic acid-induced apoptosis in cerebellar granule neurons: an attempt at cell cycle re-entry. Neuroreport 13(4):413–416CrossRefPubMedGoogle Scholar
  33. Wennersten A, Holmin S, Mathiesen T (2003) Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat. Acta Neuropathol 105(3):281–288PubMedGoogle Scholar
  34. Wong J, Hoe NW, Zhiwei F, Ng I (2005) Apoptosis and traumatic brain injury. Neurocrit Care 3(2):177–182CrossRefPubMedGoogle Scholar
  35. Yakovlev AG, Faden AI (2001) Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 24(1–3):131–144PubMedGoogle Scholar
  36. Yang Y, Mufson EJ, Herrup K (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 23(7):2557–2563PubMedGoogle Scholar
  37. Yin MB, Toth K, Cao S, Guo B, Frank C, Slocum HK, Rustum YM (1999) Involvement of cyclin D1-cdk5 overexpression and MCM3 cleavage in bax-associated spontaneous apoptosis and differentiation in an A253 human head and neck carcinoma xenograft model. Int J Cancer 83(3):341–348CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wei Ji
    • 1
  • Hanzhang Liu
    • 2
  • Chun Liu
    • 3
  • Lifei shao
    • 1
  • Yuankun Liu
    • 1
  • Shaochen Fan
    • 1
  • Xiaohong Li
    • 4
  • Lei lei Gong
    • 5
  • Shunxing Zhu
    • 3
  • Yilu Gao
    • 1
  1. 1.Department of NeurosurgeryAffiliated Hospital of Nantong UniversityNantongChina
  2. 2.Morphology LaboratoryMedical College of Nantong UniversityNantongChina
  3. 3.Experimental Animal Center of Nantong UniversityMedical College of Nantong UniversityNantongChina
  4. 4.Labortary of SurgeryAffiliated Hospital of Nantong UniversityNantongChina
  5. 5.Key Laboratory of nerve RegenerationNantong UniversityNantongChina

Personalised recommendations