Cellular and Molecular Neurobiology

, Volume 37, Issue 4, pp 635–642 | Cite as

Evidence for the Participation of Acid-Sensing Ion Channels (ASICs) in the Antinociceptive Effect of Curcumin in a Formalin-Induced Orofacial Inflammatory Model

Original Research


Curcumin, a major bioactive component of turmeric, has diverse therapeutic effects such as anti-inflammatory, antioxidant, anticancer, and antinociceptive activities. The acid-sensing ion channels (ASICs), which can be activated by acute drops in the extracellular pH, play an important role in nociception. However, very little is known about the interaction between ASICs and curcumin in nociception of inflammation. In our study, we investigated whether the antinociceptive effects of curcumin are mediated via ASICs using an orofacial nociceptive model and in vitro western blotting, immunofluorescence, whole-cell patch-clamp recordings in the trigeminal system. Intraperitoneally administered curcumin at a dose of 50 mg/kg can reduce hyperalgesia in both the phases of a formalin-induced orofacial nociceptive model. Curcumin reduced the amplitude of ASICs currents in a dose-dependent manner in trigeminal ganglion (TG) neurons, and curcumin also reduced the protein quantity but did not change the distribution of ASICs in TG. Thus, our results indicate that curcumin can reduce formalin-induced ASICs activation and thus inhibit ASICs-mediated inflammatory pain hypersensitivity.


Curcumin ASICs Trigeminal ganglion Nociception 



This work was supported by the Medical Scientific Research Foundation of GuangDong (No. A2015356) and the Construct TCM Research Program of GuangDong (No. 20141151) to Dr. H. Fu.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.


  1. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75. doi: 10.1007/978-0-387-46401-5_1 CrossRefPubMedGoogle Scholar
  2. Agrawal DK, Mishra PK (2010) Curcumin and its analogues: potential anticancer agents. Med Res Rev 30:818–860. doi: 10.1002/med.20188 PubMedGoogle Scholar
  3. Banerjee M, Tripathi LM, Srivastava VM, Puri A, Shukla R (2003) Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol Immunotoxicol 25:213–224CrossRefPubMedGoogle Scholar
  4. Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9(1):161–168CrossRefPubMedGoogle Scholar
  5. Chan MM-Y, Huang H-I, Fenton MR, Fong D (1998) In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55:1955–1962. doi: 10.1016/S0006-2952(98)00114-2 CrossRefPubMedGoogle Scholar
  6. Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci USA 95:10240–10245CrossRefPubMedPubMedCentralGoogle Scholar
  7. Deval E et al (2011) Acid-sensing ion channels in postoperative pain. J Neurosci 31:6059–6066CrossRefPubMedGoogle Scholar
  8. Duan B et al (2007) Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 27:11139–11148. doi: 10.1523/jneurosci.3364-07.2007 CrossRefPubMedGoogle Scholar
  9. Fu H et al (2016) Acid-sensing ion channels in trigeminal ganglion neurons innervating the orofacial region contribute to orofacial inflammatory pain. Clin Exp Pharmacol Physiol 43:193–202. doi: 10.1111/1440-1681.12510 CrossRefPubMedGoogle Scholar
  10. Goel A, Boland CR, Chauhan DP (2001) Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172:111–118. doi: 10.1016/S0304-3835(01)00655-3 CrossRefPubMedGoogle Scholar
  11. Hsu CH, Cheng AL (2007) Clinical studies with curcumin. Adv Exp Med Biol 595:471–480. doi: 10.1007/978-0-387-46401-5_21 CrossRefPubMedGoogle Scholar
  12. Hu Z-L et al (2010) Disruption of PICK1 attenuates the function of ASICs and PKC regulation of ASICs. Am J Physiol 299:C1355–C1362CrossRefGoogle Scholar
  13. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210CrossRefPubMedGoogle Scholar
  14. Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14:141–153PubMedGoogle Scholar
  15. Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483. doi: 10.1016/s0166-2236(03)00210-8 CrossRefPubMedGoogle Scholar
  16. Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282:17325–17329. doi: 10.1074/jbc.R700011200 CrossRefPubMedGoogle Scholar
  17. Luccarini P, Childeric A, Gaydier A-M, Voisin D, Dallel R (2006) The orofacial formalin test in the mouse: a behavioral model for studying physiology and modulation of trigeminal nociception. J Pain 7:908–914CrossRefPubMedGoogle Scholar
  18. Mamet J, Baron A, Lazdunski M, Voilley N (2002) Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci 22:10662–10670PubMedGoogle Scholar
  19. Raboisson P, Dallel R (2004) The orofacial formalin test. Neurosci Biobehav Rev 28:219–226. doi: 10.1016/j.neubiorev.2003.12.003 CrossRefPubMedGoogle Scholar
  20. Steen K, Reeh P (1993) Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 154:113–116CrossRefPubMedGoogle Scholar
  21. Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Investig 110:1185–1190. doi: 10.1172/jci15709 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026–8033PubMedGoogle Scholar
  23. Xu YX, Pindolia KR, Janakiraman N, Chapman RA, Gautam SC (1997) Curcumin inhibits IL1 alpha and TNF-alpha induction of AP-1 and NF-kB DNA-binding activity in bone marrow stromal cells. Hematop Mol Hematol 11:49–62Google Scholar
  24. Yeon K et al (2010) Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J Dent Res 89:170–174CrossRefPubMedGoogle Scholar
  25. Zhou T, Chen D, Li Q, Sun X, Song Y, Wang C (2013) Curcumin inhibits inflammatory response and bone loss during experimental periodontitis in rats. Acta Odontol Scand 71:349–356. doi: 10.3109/00016357.2012.682092 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PharmacologyGuangdong Medical UniversityDongguanPeople’s Republic of China
  2. 2.Affiliated Hospital of Guangdong Medical UniversityZhanjiangPeople’s Republic of China

Personalised recommendations