Cellular and Molecular Neurobiology

, Volume 37, Issue 4, pp 607–617 | Cite as

Up-Regulation of TAB3 Is Involved in Neuronal Apoptosis After Intracerebral Hemorrhage

  • Liang Zhu
  • Maohong Cao
  • Yaohui Ni
  • Lijian Han
  • Aihua Dai
  • Rongrong Chen
  • Xiaojin Ning
  • Xiaorong Liu
  • Kaifu Ke
Original Research
  • 220 Downloads

Abstract

Human transforming growth factor β-activated kinase (TAK1)-binding protein 3 (TAB3) is a regulator of NF-κB which has been mainly found in a variety of cancers. While TAB3 is highly expressed in brain tissue, little is known about the function of TAB3 in central nervous system. Our group established an animal ICH model with autologous whole blood injected into brain, and also a cell ICH model with hemin stimulation. Our Western blot result showed up-regulation of TAB3 during neuronal apoptosis in the model of intracerebral hemorrhage (ICH), which was also approved by immunofluorescence and immunohistochemistry result. Besides, increasing TAB3 level was accompanied by the increased expression of active-caspase-3, active-caspase-8, and decreased expression of Bcl-2. Furthermore, in in vitro study, the level of neuronal apoptosis was decreased by applying TAB3- RNA interference in PC12 cells. All the results above suggested that TAB3 probably participates in the process of neuronal apoptosis following ICH.

Keywords

Intracerebral hemorrhage TAB3 Apoptosis Neuron 

Notes

Acknowledgments

Grant sponsor: The National Natural Science Foundation of China (Nos. 81471188, 81371299).

Author Contributions

Liang Zhu, Maohong Cao, Yaohui Ni, Lijian Han, Aihua Dai, Rongrong Chen, Xiaojin Ning and Xiaorong Liu did all the experiments; Kaifu Ke provided the data and wrote the manuscript.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744CrossRefPubMedGoogle Scholar
  2. Andrews CM, Jauch EC, Hemphill JC 3rd, Smith WS, Weingart SD (2012) Emergency neurological life support: intracerebral hemorrhage. Neurocrit Care 17(Suppl 1):S37–S46CrossRefPubMedGoogle Scholar
  3. Anilkumar U, Prehn JH (2014) Anti-apoptotic BCL-2 family proteins in acute neural injury. Front Cell Neurosci 8:281CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42:1781–1786CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cheung PC, Nebreda AR, Cohen P (2004) TAB3, a new binding partner of the protein kinase TAK1. Biochem J 378:27–34CrossRefPubMedPubMedCentralGoogle Scholar
  6. Coffey ET (2014) Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15:285–299CrossRefPubMedGoogle Scholar
  7. Diringer MN (1993) Intracerebral hemorrhage: pathophysiology and management. Crit Care Med 21:1591–1603CrossRefPubMedGoogle Scholar
  8. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397CrossRefPubMedGoogle Scholar
  9. Fogarty MP (2014) Intracranial haemorrhage: therapeutic interventions and anaesthetic management. Br J Anaesth. doi: 10.1093/bja/aeu397 Google Scholar
  10. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375CrossRefPubMedGoogle Scholar
  11. Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mt Sinai J Med 76:97–104CrossRefPubMedGoogle Scholar
  12. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155CrossRefPubMedGoogle Scholar
  13. Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21:223–244CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–234CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G (2002) Behavioral tests after intracerebral hemorrhage in the rat. Stroke 33:2478–2484CrossRefPubMedGoogle Scholar
  16. Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K (2003) Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J 22:6277–6288CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jin G, Klika A, Callahan M, Faga B, Danzig J, Jiang Z, Li X, Stark GR, Harrington J, Sherf B (2004) Identification of a human NF-kappaB-activating protein, TAB3. Proc Natl Acad Sci USA 101:2028–2033CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ (2004) TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 15:535–548CrossRefPubMedGoogle Scholar
  19. Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D (2009) Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10:466–473CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206CrossRefPubMedGoogle Scholar
  21. Loftspring MC, McDole J, Lu A, Clark JF, Johnson AJ (2009) Intracerebral hemorrhage leads to infiltration of several leukocyte populations with concomitant pathophysiological changes. J Cereb Blood Flow Metab 29:137–143CrossRefPubMedGoogle Scholar
  22. Neubert M, Ridder DA, Bargiotas P, Akira S, Schwaninger M (2011) Acute inhibition of TAK1 protects against neuronal death in cerebral ischemia. Cell Death Differ 18:1521–1530CrossRefPubMedPubMedCentralGoogle Scholar
  23. Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490CrossRefPubMedGoogle Scholar
  24. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12:695–708CrossRefPubMedGoogle Scholar
  25. Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, Dean K, Franzoso G (2006) The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 13:712–729CrossRefPubMedGoogle Scholar
  26. Razani B, Cheng G (2010) NF-kappaB: much learned, much to learn. Sci Signal. doi: 10.1126/scisignal.3138pe29 PubMedCentralGoogle Scholar
  27. Roh YS, Song J, Seki E (2014) TAK1 regulates hepatic cell survival and carcinogenesis. J Gastroenterol 49:185–194CrossRefPubMedPubMedCentralGoogle Scholar
  28. Takeda K, Ichijo H (2002) Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7:1099–1111CrossRefPubMedGoogle Scholar
  29. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9:167–176CrossRefPubMedGoogle Scholar
  30. Wang J (2010) Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 92:463–477CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang YX, Yan A, Ma ZH, Wang Z, Zhang B, Ping JL, Zhu JS, Zhou Y, Dai L (2011) Nuclear factor-kappaB and apoptosis in patients with intracerebral hemorrhage. J Clin Neurosci 18:1392–1395CrossRefPubMedGoogle Scholar
  32. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63CrossRefPubMedGoogle Scholar
  33. Xue M, Del Bigio MR (2000) Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett 283:230–232CrossRefPubMedGoogle Scholar
  34. Yang L, Tao LY, Chen XP (2007) Roles of NF-kappaB in central nervous system damage and repair. Neurosci Bull 23:307–313CrossRefPubMedGoogle Scholar
  35. Zeng J, Zheng P, Xu J, Tong W, Guo Y, Yang W, Li G, He B (2011) Prediction of motor function by diffusion tensor tractography in patients with basal ganglion haemorrhage. Arch Med Sci 7:310–314CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhang D, Li H, Li T, Zhou M, Hao S, Yan H, Yu Z, Li W, Li K, Hang C (2014) TLR4 inhibitor resatorvid provides neuroprotection in experimental traumatic brain injury: implication in the treatment of human brain injury. Neurochem Int 75:11–18CrossRefPubMedGoogle Scholar
  37. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW (2014) Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 115:25–44CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Liang Zhu
    • 1
    • 2
  • Maohong Cao
    • 1
  • Yaohui Ni
    • 1
  • Lijian Han
    • 1
    • 2
  • Aihua Dai
    • 1
    • 2
  • Rongrong Chen
    • 1
  • Xiaojin Ning
    • 1
  • Xiaorong Liu
    • 1
  • Kaifu Ke
    • 1
  1. 1.Department of NeurologyAffiliated Hospital of Nantong UniversityNantongPeople’s Republic of China
  2. 2.Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetNantong UniversityNantongPeople’s Republic of China

Personalised recommendations