Cellular and Molecular Neurobiology

, Volume 37, Issue 4, pp 595–606 | Cite as

Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats

  • Zhong-Min Wu
  • Li-Hua Yang
  • Rong Cui
  • Gui-Lian Ni
  • Feng-Tian Wu
  • Yong Liang
Original Research

Abstract

One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT3 receptor in the development of PTSD, even though 5-HT3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

Keywords

5-HT3 receptor Hippocampal autophagy Posttraumatic stress disorder Conditioned fear response Memory extinction 

Notes

Acknowledgments

We thank Professor Marong Fang for his valuable suggestions on this paper.

Funding

This work was supported by Zhejiang Provincial Science and Technology Department of Public Welfare Technology Application Project (2014C37026).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Bachy A, Heaulme M, Giudice A, Michaud JC, Lefevre IA, Souilhac J, Manara L, Emerit MB, Gozlan H, Hamon M et al (1993) SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol 237(2–3):299–309CrossRefPubMedGoogle Scholar
  2. Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29(3):450–460. doi: 10.1038/sj.npp.1300320 CrossRefPubMedGoogle Scholar
  3. Benekareddy M, Goodfellow NM, Lambe EK, Vaidya VA (2010) Enhanced function of prefrontal serotonin 5-HT(2) receptors in a rat model of psychiatric vulnerability. J Neurosci 30(36):12138–12150. doi: 10.1523/JNEUROSCI.3245-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhatnagar S, Sun LM, Raber J, Maren S, Julius D, Dallman MF (2004) Changes in anxiety-related behaviors and hypothalamic-pituitary-adrenal activity in mice lacking the 5-HT-3A receptor. Physiol Behav 81(4):545–555. doi: 10.1016/j.physbeh.2004.01.018 CrossRefPubMedGoogle Scholar
  5. Blechert J, Michael T, Vriends N, Margraf J, Wilhelm FH (2007) Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behav Res Ther 45(9):2019–2033CrossRefPubMedGoogle Scholar
  6. Brunello N, Davidson JR, Deahl M, Kessler RC, Mendlewicz J, Racagni G, Shalev AY, Zohar J (2001) Posttraumatic stress disorder: diagnosis and epidemiology, comorbidity and social consequences, biology and treatment. Neuropsychobiology 43(3):150–162CrossRefPubMedGoogle Scholar
  7. Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, Chun J, Rodriguez De Fonseca F, Estivill-Torrus G, Santin LJ (2011) Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA(1) receptor knockout mice. PLoS ONE 6(9):e25522. doi: 10.1371/journal.pone.0025522 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Charney DS, Deutch AY, Krystal JH, Southwick SM, Davis M (1993) Psychobiologic mechanisms of posttraumatic stress disorder. Arch Gen Psychiatry 50(4):295–305CrossRefPubMedGoogle Scholar
  9. Correa RJ, Valdes YR, Shepherd TG, DiMattia GE (2015) Beclin-1 expression is retained in high-grade serous ovarian cancer yet is not essential for autophagy induction in vitro. J Ovarian Res 8:52. doi: 10.1186/s13048-015-0182-y CrossRefPubMedPubMedCentralGoogle Scholar
  10. Costall B, Naylor RJ (1992) Anxiolytic potential of 5-HT3 receptor antagonists. Pharmacol Toxicol 70(3):157–162CrossRefPubMedGoogle Scholar
  11. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397(6717):359–363. doi: 10.1038/16941 CrossRefPubMedGoogle Scholar
  12. Davis LL, Suris A, Lambert MT, Heimberg C, Petty F (1997) Post-traumatic stress disorder and serotonin: new directions for research and treatment. J Psychiatry Neurosci 22(5):318–326PubMedPubMedCentralGoogle Scholar
  13. Derkach V, Surprenant A, North RA (1989) 5-HT3 receptors are membrane ion channels. Nature 339(6227):706–709. doi: 10.1038/339706a0 CrossRefPubMedGoogle Scholar
  14. Edwards E, Hampton E, Ashby CR, Zhang J, Wang RY (1996) 5-HT3-like receptors in the rat medial prefrontal cortex: further pharmacological characterization. Brain Res 733(1):21–30CrossRefPubMedGoogle Scholar
  15. Eisenberg-Lerner A, Kimchi A (2012) PKD at the crossroads of necrosis and autophagy. Autophagy 8(3):433–434. doi: 10.4161/auto.19288 CrossRefPubMedGoogle Scholar
  16. Fakhfouri G, Mousavizadeh K, Mehr SE, Dehpour AR, Zirak MR, Ghia JE, Rahimian R (2015) From chemotherapy-induced emesis to neuroprotection: therapeutic opportunities for 5-HT3 receptor antagonists. Mol Neurobiol 52(3):1670–1679. doi: 10.1007/s12035-014-8957-5 CrossRefPubMedGoogle Scholar
  17. Ganon-Elazar E, Akirav I (2012) Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress. Neuropsychopharmacology 37(2):456–466. doi: 10.1038/npp.2011.204 CrossRefPubMedGoogle Scholar
  18. Goswami S, Rodriguez-Sierra O, Cascardi M, Pare D (2013) Animal models of post-traumatic stress disorder: face validity. Front Neurosci 7:89. doi: 10.3389/fnins.2013.00089 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guthrie RM, Bryant RA (2006) Extinction learning before trauma and subsequent posttraumatic stress. Psychosom Med 68(2):307–311CrossRefPubMedGoogle Scholar
  20. Hageman I, Andersen HS, Jorgensen MB (2001) Post-traumatic stress disorder: a review of psychobiology and pharmacotherapy. Acta Psychiatr Scand 104(6):411–422CrossRefPubMedGoogle Scholar
  21. Harmer CJ, Reid CB, Ray MK, Goodwin GM, Cowen PJ (2006) 5HT(3) antagonism abolishes the emotion potentiated startle effect in humans. Psychopharmacology 186(1):18–24. doi: 10.1007/s00213-006-0337-z CrossRefPubMedGoogle Scholar
  22. Harris JA, Westbrook RF (1998) Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology 140(1):105–115CrossRefPubMedGoogle Scholar
  23. Hedges DW, Allen S, Tate DF, Thatcher GW, Miller MJ, Rice SA, Cleavinger HB, Sood S, Bigler ED (2003) Reduced hippocampal volume in alcohol and substance naive Vietnam combat veterans with posttraumatic stress disorder. Cogn Behav Neurol 16(4):219–224CrossRefPubMedGoogle Scholar
  24. Hoskins M, Pearce J, Bethell A, Dankova L, Barbui C, Tol WA, van Ommeren M, de Jong J, Seedat S, Chen H, Bisson JI (2015) Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis. Br J Psychiatry 206(2):93–100. doi: 10.1192/bjp.bp.114.148551 CrossRefPubMedGoogle Scholar
  25. Howlett JR, Stein MB (2015) Prevention of trauma and stressor-related disorders: a review. Neuropsychopharmacology. doi: 10.1038/npp.2015.261 PubMedPubMedCentralGoogle Scholar
  26. Ipser J, Seedat S, Stein DJ (2006) Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. S Afr Med J 96(10):1088–1096PubMedGoogle Scholar
  27. Jaggi M, Du C, Zhang W, Balaji KC (2007) Protein kinase D1: a protein of emerging translational interest. Front Biosci 12:3757–3767CrossRefPubMedGoogle Scholar
  28. Jans LA, Riedel WJ, Markus CR, Blokland A (2007) Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12(6):522–543CrossRefPubMedGoogle Scholar
  29. Katsurabayashi S, Kubota H, Tokutomi N, Akaike N (2003) A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons. Neuropharmacology 44(8):1022–1030CrossRefPubMedGoogle Scholar
  30. Kawa K (1994) Distribution and functional properties of 5-HT3 receptors in the rat hippocampal dentate gyrus: a patch-clamp study. J Neurophysiol 71(5):1935–1947PubMedGoogle Scholar
  31. Keller SM, Schreiber WB, Staib JM, Knox D (2015) Sex differences in the single prolonged stress model. Behav Brain Res 286:29–32. doi: 10.1016/j.bbr.2015.02.034 CrossRefPubMedGoogle Scholar
  32. Kelley SP, Bratt AM, Hodge CW (2003) Targeted gene deletion of the 5-HT3A receptor subunit produces an anxiolytic phenotype in mice. Eur J Pharmacol 461(1):19–25CrossRefPubMedGoogle Scholar
  33. Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD (2005) Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord 88(1):79–86CrossRefPubMedGoogle Scholar
  34. Klemenhagen KC, Gordon JA, David DJ, Hen R, Gross CT (2006) Increased fear response to contextual cues in mice lacking the 5-HT1A receptor. Neuropsychopharmacology 31(1):101–111PubMedGoogle Scholar
  35. Knox D, Perrine SA, George SA, Galloway MP, Liberzon I (2010) Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci Lett 480(1):16–20. doi: 10.1016/j.neulet.2010.05.052 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kohler S, Cierpinsky K, Kronenberg G, Adli M (2015) The serotonergic system in the neurobiology of depression: relevance for novel antidepressants. J Psychopharmacol 30:13–22CrossRefPubMedGoogle Scholar
  37. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiyama Y (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172(2):454–469. doi: 10.2353/ajpath.2008.070876 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kondo M, Nakamura Y, Ishida Y, Yamada T, Shimada S (2014) The 5-HT3A receptor is essential for fear extinction. Learn Mem 21(1):1–4. doi: 10.1101/lm.032193.113 PubMedCentralGoogle Scholar
  39. Koyama S, Matsumoto N, Kubo C, Akaike N (2000) Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdala neurons. J Physiol 529(Pt 2):373–383CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kusserow H, Davies B, Hortnagl H, Voigt I, Stroh T, Bert B, Deng DR, Fink H, Veh RW, Theuring F (2004) Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res Mol Brain Res 129(1–2):104–116CrossRefPubMedGoogle Scholar
  41. Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30(50):16796–16808. doi: 10.1523/JNEUROSCI.1869-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lindauer RJ, Vlieger EJ, Jalink M, Olff M, Carlier IV, Majoie CB, Den Heeten GJ, Gersons BP (2005) Effects of psychotherapy on hippocampal volume in out-patients with post-traumatic stress disorder: a MRI investigation. Psychol Med 35(10):1421–1431CrossRefPubMedGoogle Scholar
  43. Liu L, Li CJ, Lu Y, Zong XG, Luo C, Sun J, Guo LJ (2015) Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep 5:14474. doi: 10.1038/srep14474 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Makkar SR, Zhang SQ, Cranney J (2010) Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 35(8):1625–1652. doi: 10.1038/npp.2010.53 PubMedPubMedCentralGoogle Scholar
  45. Maren S (2011) Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70(5):830–845. doi: 10.1016/j.neuron.2011.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254(5030):432–437CrossRefPubMedGoogle Scholar
  47. McMahon LL, Kauer JA (1997) Hippocampal interneurons are excited via serotonin-gated ion channels. J Neurophysiol 78(5):2493–2502PubMedGoogle Scholar
  48. Meneses A (2013) 5-HT systems: emergent targets for memory formation and memory alterations. Rev Neurosci 24(6):629–664. doi: 10.1515/revneuro-2013-0026 CrossRefPubMedGoogle Scholar
  49. Meneses A (2015) Serotonin, neural markers, and memory. Front Pharmacol 6:143. doi: 10.3389/fphar.2015.00143 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Michopoulos V, Norrholm SD, Jovanovic T (2015) Diagnostic biomarkers for posttraumatic stress disorder: promising horizons from translational neuroscience research. Biol Psychiatry 78(5):344–353. doi: 10.1016/j.biopsych.2015.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17(9):3157–3167PubMedGoogle Scholar
  52. Morales M, Battenberg E, de Lecea L, Sanna PP, Bloom FE (1996) Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. Brain Res Mol Brain Res 36(2):251–260CrossRefPubMedGoogle Scholar
  53. Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC (2011) Autophagosome precursor maturation requires homotypic fusion. Cell 146(2):303–317. doi: 10.1016/j.cell.2011.06.023 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Murrough JW, Czermak C, Henry S, Nabulsi N, Gallezot JD, Gueorguieva R, Planeta-Wilson B, Krystal JH, Neumaier JF, Huang Y, Ding YS, Carson RE, Neumeister A (2011) The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding. Arch Gen Psychiatry 68(9):892–900. doi: 10.1001/archgenpsychiatry.2011.91 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12(2):120–150CrossRefPubMedGoogle Scholar
  56. Naghdi N, Harooni HE (2005) The effect of intrahippocampal injections of ritanserin (5HT2A/2C antagonist) and granisetron (5HT3 antagonist) on learning as assessed in the spatial version of the water maze. Behav Brain Res 157(2):205–210CrossRefPubMedGoogle Scholar
  57. Nguyen H, Wang H, le T, Ho W, Sharkey KA, Swain MG (2008) Downregulated hypothalamic 5-HT3 receptor expression and enhanced 5-HT3 receptor antagonist-mediated improvement in fatigue-like behaviour in cholestatic rats. Neurogastroenterol Motil 20(3):228–235CrossRefPubMedGoogle Scholar
  58. Nikoletopoulou V, Papandreou ME, Tavernarakis N (2015) Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ 22(3):398–407. doi: 10.1038/cdd.2014.204 CrossRefPubMedGoogle Scholar
  59. Nixon RA, Yang DS (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4(10):a008839. doi: 10.1101/cshperspect.a008839 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Orsini CA, Maren S (2012) Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev 36(7):1773–1802. doi: 10.1016/j.neubiorev.2011.12.014 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Parsons RG, Ressler KJ (2013) Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci 16(2):146–153. doi: 10.1038/nn.3296 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pham K, Nacher J, Hof PR, McEwen BS (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 17(4):879–886CrossRefPubMedGoogle Scholar
  63. Pietrzak RH, Henry S, Southwick SM, Krystal JH, Neumeister A (2013) Linking in vivo brain serotonin type 1B receptor density to phenotypic heterogeneity of posttraumatic stress symptomatology. Mol Psychiatry 18(4):399–401. doi: 10.1038/mp.2012.60 CrossRefPubMedGoogle Scholar
  64. Pitsikas N, Brambilla A, Borsini F (1994) Effect of DAU 6215, a novel 5-HT3 receptor antagonist, on scopolamine-induced amnesia in the rat in a spatial learning task. Pharmacol Biochem Behav 47(1):95–99CrossRefPubMedGoogle Scholar
  65. Price LH, Malison RT, McDougle CJ, McCance-Katz EF, Owen KR, Heninger GR (1997) Neurobiology of tryptophan depletion in depression: effects of m-chlorophenylpiperazine (mCPP). Neuropsychopharmacology 17(5):342–350CrossRefPubMedGoogle Scholar
  66. Puig MV, Santana N, Celada P, Mengod G, Artigas F (2004) In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb Cortex 14(12):1365–1375. doi: 10.1093/cercor/bhh097 CrossRefPubMedGoogle Scholar
  67. Romao S, Munz C (2014) LC3-associated phagocytosis. Autophagy 10(3):526–528. doi: 10.4161/auto.27606 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ropert N, Guy N (1991) Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J Physiol 441:121–136CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shalev AY (2001) What is posttraumatic stress disorder? J Clin Psychiatry 62(Suppl 17):4–10PubMedGoogle Scholar
  70. Shi CS, Kehrl JH (2008) MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem 283(48):33175–33182. doi: 10.1074/jbc.M804478200 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Smit-Rigter LA, Wadman WJ, van Hooft JA (2010) Impaired social behavior in 5-HT(3A) receptor knockout mice. Front Behav Neurosci 4:169. doi: 10.3389/fnbeh.2010.00169 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Southwick SM, Krystal JH, Bremner JD, Morgan CA 3rd, Nicolaou AL, Nagy LM, Johnson DR, Heninger GR, Charney DS (1997) Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch Gen Psychiatry 54(8):749–758CrossRefPubMedGoogle Scholar
  73. Staubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 15(3 Pt 2):2445–2452PubMedGoogle Scholar
  74. Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci U S A 90(4):1430–1434CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tronson NC, Schrick C, Fischer A, Sananbenesi F, Pages G, Pouyssegur J, Radulovic J (2008) Regulatory mechanisms of fear extinction and depression-like behavior. Neuropsychopharmacology 33(7):1570–1583CrossRefPubMedGoogle Scholar
  76. Turner TJ, Mokler DJ, Luebke JI (2004) Calcium influx through presynaptic 5-HT3 receptors facilitates GABA release in the hippocampus: in vitro slice and synaptosome studies. Neuroscience 129(3):703–718CrossRefPubMedGoogle Scholar
  77. Villarreal G, Petropoulos H, Hamilton DA, Rowland LM, Horan WP, Griego JA, Moreshead M, Hart BL, Brooks WM (2002) Proton magnetic resonance spectroscopy of the hippocampus and occipital white matter in PTSD: preliminary results. Can J Psychiatry 47(7):666–670PubMedGoogle Scholar
  78. Watanabe Y, Sakai RR, McEwen BS, Mendelson S (1993) Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. Brain Res 615(1):87–94CrossRefPubMedGoogle Scholar
  79. Wignall EL, Dickson JM, Vaughan P, Farrow TF, Wilkinson ID, Hunter MD, Woodruff PW (2004) Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biol Psychiatry 56(11):832–836CrossRefPubMedGoogle Scholar
  80. Wu HJ, Pu JL, Krafft PR, Zhang JM, Chen S (2015) The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders. Cell Mol Neurobiol 35(1):85–99. doi: 10.1007/s10571-014-0116-z CrossRefPubMedGoogle Scholar
  81. Wu ZM, Zheng CH, Zhu ZH, Wu FT, Ni GL, Liang Y (2016) SiRNA-mediated serotonin transporter knockdown in the dorsal raphe nucleus rescues single prolonged stress-induced hippocampal autophagy in rats. J Neurol Sci 360:133–140. doi: 10.1016/j.jns.2015.11.056 CrossRefPubMedGoogle Scholar
  82. Yamamoto S, Morinobu S, Takei S, Fuchikami M, Matsuki A, Yamawaki S, Liberzon I (2009) Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety 26(12):1110–1117. doi: 10.1002/da.20629 CrossRefPubMedGoogle Scholar
  83. Yang J, Takahashi Y, Cheng E, Liu J, Terranova PF, Zhao B, Thrasher JB, Wang HG, Li B (2010) GSK-3beta promotes cell survival by modulating Bif-1-dependent autophagy and cell death. J Cell Sci 123(Pt 6):861–870. doi: 10.1242/jcs.060475 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhong-Min Wu
    • 1
    • 3
  • Li-Hua Yang
    • 2
  • Rong Cui
    • 3
  • Gui-Lian Ni
    • 3
  • Feng-Tian Wu
    • 4
  • Yong Liang
    • 1
  1. 1.Department of AnatomyMedical College of Taizhou UniversityTaizhouChina
  2. 2.Department of NeurologyTaizhou HospitalTaizhouChina
  3. 3.Department of NeurologyFirst People’s Hospital of Linhai CityLinhaiChina
  4. 4.City College of Zhejiang UniversityHangzhouChina

Personalised recommendations