Advertisement

Cellular and Molecular Neurobiology

, Volume 36, Issue 8, pp 1377–1387 | Cite as

Inhibited Expression of α4β2 Nicotinic Acetylcholine Receptor in Blood Leukocytes of Chinese Patients with Vascular Dementia and in Blood Leukocytes as Well as the Hippocampus of Brain from Ischemic Rats

  • Yan Xiao
  • Liang Zhao
  • Shi-Xiang Kuang
  • Zhi-Zhong Guan
Original Research

Abstract

Our present aim was to investigate whether changes in the expression of α4β2 nicotinic acetylcholine receptor (nAChR) in patients with vascular dementia (VaD) and ischemic rats are related to cognitive scores. Blood leukocytes for 59 Chinese patients with VaD (diagnosed on the basis of clinical guidelines) and 31 cases as age-matched controls were examined, and the animal model established employing Pulsinelli’s four-vessel occlusion. The levels of α4 and β2 subunit mRNA in leukocytes and the hippocampus were analyzed by real-time PCR, and the protein level in the hippocampus by Western blotting. The mini-mental state examination was utilized to characterize the intellectual capacity of the patients with reference to the DSM IV diagnosis and Hachinski Ischemic Scale score, and the Morris Water Maze test to assess the ability of learning and memory of the rats. In patients, the level of α4 mRNA, but not β2, in blood leukocytes was clearly lowered, which was significantly correlated to their clinical cognitive test scores. Smoking exerted no impact on the level of α4 mRNA in the present study. In the blood leukocytes and the hippocampus of the brains of the ischemic rats, the levels of both α4 and β2 mRNA were lowered, and the proteins of these subunits in the hippocampus were decreased. The changes of α4 and β2 mRNA in blood leukocytes, and their protein levels in the hippocampus were significantly correlated with impaired learning and memory. These findings indicate that alterations in expression of the α4β2 subtype of nAChR may be involved in the molecular mechanism(s) underlying the cognitive deficit associated with VaD.

Keywords

Blood Hippocampus Ischemia Leaning and memory Nicotinic acetylcholine receptor Vascular dementia 

Notes

Acknowledgments

This work was supported financially by grants from the Chinese National Natural Science Foundation (81260173), the Foundation of the Ministry of Education P. R. China (IRT13058), and the Foundation in Guizhou, China ([2014]6008, [2014]06 and [2014]2012).

References

  1. Akaike A, Takada-Takatori Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40:211–216CrossRefPubMedGoogle Scholar
  2. Amenta F, Di Tullio MA, Tomassoni D (2002) The cholinergic approach for the treatment of vascular dementia: evidence from pre-clinical and clinical studies. Clin Exp Hypertens 24:697–713CrossRefPubMedGoogle Scholar
  3. American Psychiatric Association (1994) DSM-IV: diagnostic and statistical manual of mental disorders. 4th edn. American Psychiatric Association, Washington, p 92–4Google Scholar
  4. Arosio B, D’Addario C, Gussago C, Casati M, Tedone E, Ferri E, Nicolini P, Rossi PD, Maccarrone M, Mari D (2014) Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly. Biomed Res Int 2014:169203CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arroyo-Jim nez MM, Bourgeois JP, Marubio LM, Le Sourd AM, Ottersen OP, Rinvik E, Fairén A, Changeux JP (1999) Ultrastructural localization of the alpha4-subunit of the neuronal acetylcholine nicotinic receptor in the rat substantia nigra. J Neurosci 19:6475–6487PubMedGoogle Scholar
  6. Bartsch T, Wulff P (2015) The hippocampus in aging and disease: from plasticity to vulnerability. Neuroscience 309:1–16CrossRefPubMedGoogle Scholar
  7. Cedillo JL, Arnalich F, Martín-Sánchez C, Quesada A, Rios JJ, Maldifassi MC, Atienza G, Renart J, Fernández-Capitán C, García-Rio F, López-Collazo E, Montiel C (2015) Usefulness of α7 nicotinic receptor messenger RNA levels in peripheral blood mononuclear cells as a marker for cholinergic antiinflammatory pathway activity in septic patients: results of a pilot study. J Infect Dis 211:146–155CrossRefPubMedGoogle Scholar
  8. Colloby SJ, Firbank MJ, Pakrasi S, Perry EK, Pimlott SL, Wyper DJ, McKeith IG, Williams ED, O’Brien JT (2011) Alterations in nicotinic α4β2 receptor binding in vascular dementia using 123I-5IA-85380 SPECT: comparison with regional cerebral blood flow. Neurobiol Aging 32:293–301CrossRefPubMedGoogle Scholar
  9. Degerman S, Domellöf M, Landfors M, Linder J, Lundin M, Haraldsson S, Elgh E, Roos G, Forsgren L (2000) Long leukocyte telomere length at diagnosis is a risk factor for dementia progression in idiopathic parkinsonism. PLoS One 9:e113387CrossRefGoogle Scholar
  10. Di Lazzaro V, Pilato F, Dileone M, Profice P, Marra C, Ranieri F, Quaranta D, Gainotti G, Tonali PA (2008) In vivo functional evaluation of central cholinergic circuits in vascular dementia. Clin Neurophysiol 119:2494–2500CrossRefPubMedGoogle Scholar
  11. Fernández-Gómez FJ, Muñoz-Delgado E, Montenegro MF, Campoy FJ, Vidal CJ, Jordán J (2010) Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8. J Neurosci Res 88:155–166CrossRefPubMedGoogle Scholar
  12. Ferrari R, Frasoldati A, Leo G, Torri C, Zini I, Agnati LF, Zoli M (1999) Changes in nicotinic acetylcholine receptor subunit mRNAs and nicotinic binding in spontaneously hypertensive stroke prone rats. Neurosci Lett 277:169–172CrossRefPubMedGoogle Scholar
  13. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefPubMedGoogle Scholar
  14. Forette F, Seux ML, Staessen JA, Thijs L, Birkenhäger WH, Babarskiene MR, Babeanu S, Bossini A, Gil-Extremera B, Girerd X, Laks T, Lilov E, Moisseyev V, Tuomilehto J, Vanhanen H, Webster J, Yodfat Y, Fagard R (1998) Prevention of dementia in randomised double blind placebo controlled Systolic Hypertension in Europe (Syst Eur) trial. Lancet 352:1347–1351CrossRefPubMedGoogle Scholar
  15. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:2672–2713CrossRefPubMedPubMedCentralGoogle Scholar
  16. Graham A, Court JA, Martin-Ruiz CM, Jaros E, Perry R, Volsen SG, Bose S, Evans N, Ince P, Kuryatov A, Lindstrom J, Gotti C, Perry EK (2002) Immunohistochemical localisation of nicotinic acetylcholine receptor subunits in human cerebellum. Neuroscience 113:493–507CrossRefPubMedGoogle Scholar
  17. Grantham C, Geerts H (2002) The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J Neurol Sci 203–204:131–136CrossRefPubMedGoogle Scholar
  18. Guan ZZ, Zhang X, Ravid R, Nordberg A (2000) Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer’s disease. J Neurochem 74:237–243CrossRefPubMedGoogle Scholar
  19. Gussago C, Arosio B, Casati M, Ferri E, Gualandris F, Tedone E, Nicolini P, Rossi PD, Abbate C, Mari D (2014) Different adenosine A2A receptor expression in peripheral cells from elderly patients with vascular dementia and Alzheimer’s disease. J Alzheimers Dis 40:45–49PubMedGoogle Scholar
  20. Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, Ross Russell RW, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637CrossRefPubMedGoogle Scholar
  21. Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, Yu Z, Sun FY (2008) Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke 39:2837–2844CrossRefPubMedGoogle Scholar
  22. Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80:844–866CrossRefPubMedGoogle Scholar
  23. Jazi R, Lalonde R, Qian S, Strazielle C (2009) Regional brain evaluation of acetylcholinesterase activity in PS1/A246E transgenic mice. Neurosci Res 63:106–114CrossRefPubMedGoogle Scholar
  24. Jellinger KA (2008) The pathology of “vascular dementia”: a critical update. J Alzheimer’s Dis 14:107–123Google Scholar
  25. Kimura S, Saito H, Minami M, Togashi H, Nakamura N, Nemoto M, Parvez HS (2000) Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Toxicology 153:167–178CrossRefPubMedGoogle Scholar
  26. Kirshner HS (2009) Vascular dementia: a review of recent evidence for prevention and treatment. Curr Neurol Neurosci Rep 9:437–442CrossRefPubMedGoogle Scholar
  27. Martin-Ruiz C, Court J, Lee M, Piggott M, Johnson M, Ballard C, Kalaria R, Perry R, Perry E (2000) Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. Acta Neurol Scand Suppl 176:34–41CrossRefPubMedGoogle Scholar
  28. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60CrossRefPubMedGoogle Scholar
  29. Morris R, Cahusac PM, Salt TE, Morris RG, Hill RG (1982) A behavioural model for the study of facial nociception and the effects of descending modulatory systems in the rat. J Neurosci Methods 6:245–252CrossRefPubMedGoogle Scholar
  30. Nordberg A, Alafuzof L, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31:l03–l11CrossRefGoogle Scholar
  31. O’Neill MJ, Murray TK, Lakics V, Visanji NP, Duty S (2002) The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr Drug Targets CNS Neurol Disord 1:399–411CrossRefPubMedGoogle Scholar
  32. Ordy JM, Thomas GJ, Volpe BT, Dunlap WP (1988) Colombo PM. An animal model of human-type memory loss based on aging, lesion, forebrain ischemia, and drug studies with the rat. Neurobiol Aging 9:667–683CrossRefPubMedGoogle Scholar
  33. Ota VK, Noto C, Gadelha A, Santoro ML, Silva PN, Melaragno MI, Smith Mde A, Cordeiro Q, Bressan RA, Belangero SI (2013) Neurotransmitter receptor and regulatory gene expression in peripheral blood of Brazilian drug-naïve first-episode psychosis patients before and after antipsychotic treatment. Psychiatry Res 210:1290–1292CrossRefPubMedGoogle Scholar
  34. Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111CrossRefPubMedGoogle Scholar
  35. Perry E, Ziabreva I, Perry R, Aarsland D, Ballard C (2005) Absence of cholinergic deficits in “pure” vascular dementia. Neurology 64:132–133CrossRefPubMedGoogle Scholar
  36. Petersen MH, Budtz-Jørgensen E, Sørensen SA, Nielsen JE, Hjermind LE, Vinther-Jensen T, Nielsen SM, Nørremølle A (2014) Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington’s disease. Mitochondrion 17:14–21CrossRefPubMedGoogle Scholar
  37. Pimlott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, Perry RH, Perry EK, Wyper D (2004) Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 29:108–116CrossRefPubMedGoogle Scholar
  38. Pulsinelli WA, Buchan AM (1988) The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke 19:913–914CrossRefPubMedGoogle Scholar
  39. Qi XL, Zhang XL, Ou-Yang K, Shan KR, Guan ZZ (2013) The influence of inhibiting or stimulating the expression of the α3 subunit of the nicotinic receptor in SH-SY5Y cells on levels of amyloid-β peptide and β-secretase. Neurochem Int 62:79–83CrossRefPubMedGoogle Scholar
  40. Roman GC (2002) Vascular dementia may be the most common form of dementia in the elderly. J Neurol Sci 203–204:7–10CrossRefPubMedGoogle Scholar
  41. Roman GC, Kalaria RN (2006) Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol Aging 27:1769–1785CrossRefPubMedGoogle Scholar
  42. Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Brun A, Hofman A, Moody DM, O’Brien MD, Yamaguchi T, Grafman J, Drayer BP, Bennett DA, Fisher M, Ogata J, Kokmen E, Bermejo F, Wolf PA, Gorelick PB, Bick KL, Pajeau AK, Bell MA, DeCarli C, Culebras A, Korczyn AD, Bogousslavsky J, Hartmann A, Scheinberg P (1993) Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. Neurology 43:250–260CrossRefPubMedGoogle Scholar
  43. Saito H, Togashi H, Yoshioka M, Nakamura N, Minami M, Parvez H (1995) Animal models of vascular dementia with emphasis on stroke-prone spontane ously hypertensive rats. Clin Exp Pharmacol Physiol Suppl 1:S257–S259CrossRefGoogle Scholar
  44. Sakuma M, Hyakawa N, Kato H, Araki T (2008) Time dependent changes of striatal interneurons after focal cerebral ischemia in rats. J Neural Transm 115:413–422CrossRefPubMedGoogle Scholar
  45. Skok MV, Grailhe R, Agenes F, Changeux JP (2007) The role of nicotinic receptors in B-lymphocyte development and activation. Life Sci 80:2334–2336CrossRefPubMedGoogle Scholar
  46. Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, Lamb BT, Montine TJ, Nedergaard M, Schaffer CB, Schneider JA, Wellington C, Wilcock DM, Zipfel GJ, Zlokovic B, Bain LJ, Bosetti Galis ZS, Koroshetz W, Carrillo MC (2015) Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement 11:710–717CrossRefPubMedGoogle Scholar
  47. Togashi H, Kimura S, Matsumoto M, Yoshioka M, Minami M, Saito H (1996) Cholinergic changes in the hippocampus of stroke prone spontaneously hypertensive rats. Stroke 27:520–526CrossRefPubMedGoogle Scholar
  48. Viswanathan A, Rocca WA, Tzourio C (2009) Vascular risk factors and dementia: How to move forward? Neurology 72:368–373CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wongsriraksa A, Parsons ME, Whelan CJ (2009) Characterisation of nicotine receptors on human peripheral blood mononuclear cells (PBMC). Inflamm Res 58:38–44CrossRefPubMedGoogle Scholar
  50. Wright CB, Flores A (2015) Vascular contributions to cognitive impairment. Neurol Clin Pract 5:201–208CrossRefPubMedPubMedCentralGoogle Scholar
  51. Xiao Y, Guan ZZ, Wu CX, Li Y, Kuang SX, Pei JJ (2012) Correlations between cholinesterase activity and cognitive scores in post-ischemic rats and patients with vascular dementia. Cell Mol Neurobiol 32:399–407CrossRefPubMedGoogle Scholar
  52. Zhang ZX, Zahner GE, Román GC, Liu J, Hong Z, Qu QM, Liu XH, Zhang XJ, Zhou B, Wu CB, Tang MN, Hong X, Li H (2005) Dementia subtypes in China: prevalence in Beijing, Xian, Shanghai, and Chengdu. Arch Neurol 62:447–453CrossRefPubMedGoogle Scholar
  53. Zhang LJ, Xiao Y, Qi XL, Shan KR, Pei JJ, Kuang SX, Liu F, Guan ZZ (2010) Cholinesterase activity and mRNA level of nicotinic acetylcholine receptors (alpha4 and beta2 Subunits) in blood of elderly Chinese diagnosed as Alzheimer’s disease. J Alzheimers Dis 19:849–858PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yan Xiao
    • 1
    • 2
  • Liang Zhao
    • 1
  • Shi-Xiang Kuang
    • 3
  • Zhi-Zhong Guan
    • 1
    • 2
  1. 1.Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
  2. 2.The Key Laboratory of Medical Molecular BiologyGuizhou Medical UniversityGuiyangChina
  3. 3.Department of NeurologyThe Second Affiliated Hospital of Guiyang Traditional Chinese Medical CollegeGuiyangChina

Personalised recommendations