Cellular and Molecular Neurobiology

, Volume 36, Issue 2, pp 241–258 | Cite as

Microvascular Dysfunction and Cognitive Impairment

  • T. Michael De Silva
  • Frank M. Faraci
Review Paper


The impact of vascular risk factors on cognitive function has garnered much interest in recent years. The appropriate distribution of oxygen, glucose, and other nutrients by the cerebral vasculature is critical for proper cognitive performance. The cerebral microvasculature is a key site of vascular resistance and a preferential target for small vessel disease. While deleterious effects of vascular risk factors on microvascular function are known, the contribution of this dysfunction to cognitive deficits is less clear. In this review, we summarize current evidence for microvascular dysfunction in brain. We highlight effects of select vascular risk factors (hypertension, diabetes, and hyperhomocysteinemia) on the pial and parenchymal circulation. Lastly, we discuss potential links between microvascular disease and cognitive function, highlighting current gaps in our understanding.


Endothelium Cerebral circulation Microcirculation Vascular remodeling Hypertension Diabetes 



Work summarized in this review was supported by research grants from the National Institute of Health (HL-62984 and HL-113863), the Department of Veteran’s Affair’s (BX001399), the Fondation Leducq (Transatlantic Network of Excellence), and the National Health and Medical Research Council of Australia (1053786).


  1. Abd-Elrahman KS, Walsh MP, Cole WC (2015) Abnormal Rho-associated kinase activity contributes to the dysfunctional myogenic response of cerebral arteries in type 2 diabetes. Can J Physiol Pharmacol 93:177–184PubMedCrossRefGoogle Scholar
  2. Alexis JD, Wang N, Che W, Lerner-Marmarosh N, Sahni A, Korshunov VA, Zou Y, Ding B, Yan C, Berk BC, Abe J (2009) Bcr kinase activation by angiotensin II inhibits peroxisome-proliferator-activated receptor gamma transcriptional activity in vascular smooth muscle cells. Circ Res 104:69–78PubMedPubMedCentralCrossRefGoogle Scholar
  3. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215PubMedCrossRefGoogle Scholar
  4. Arrick DM, Mayhan WG (2014) Cerebrovascular disease in type 1 diabetes: role of oxidative stress. In: Obrosova I (ed) Studies in diabetes, oxidative stress in applied basic research and clinical practice. Springer, New York, pp 13–36Google Scholar
  5. Arrick DM, Sharpe GM, Sun H, Mayhan WG (2008) Losartan improves impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in type 1 diabetic rats. Brain Res 1209:128–135PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ayata C, Shin HK, Dilekoz E, Atochin DN, Kashiwagi S, Eikermann-Haerter K, Huang PL (2013) Hyperlipidemia disrupts cerebrovascular reflexes and worsens ischemic perfusion defect. J Cereb Blood Flow Metab 33:954–962PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balbi M, Ghosh M, Longden TA, Jativa Vega M, Gesierich B, Hellal F, Lourbopoulos A, Nelson MT, Plesnila N (2015) Dysfunction of mouse cerebral arteries during early aging. J Cereb Blood Flow Metab 35:1445–1453PubMedCrossRefGoogle Scholar
  8. Baumbach GL, Hajdu MA (1993) Mechanics and composition of cerebral arterioles in renal and spontaneously hypertensive rats. Hypertension 21:816–826PubMedCrossRefGoogle Scholar
  9. Baumbach GL, Heistad DD (1983) Effects of sympathetic stimulation and changes in arterial pressure on segmental resistance of cerebral vessels in rabbits and cats. Circ Res 52:527–533PubMedCrossRefGoogle Scholar
  10. Baumbach GL, Heistad DD (1988) Cerebral circulation in chronic arterial hypertension. Hypertension 12:89–95PubMedCrossRefGoogle Scholar
  11. Baumbach GL, Heistad DD (1989) Remodeling of cerebral arterioles in chronic hypertension. Hypertension 13:968–972PubMedCrossRefGoogle Scholar
  12. Baumbach GL, Sigmund CD, Bottiglieri T, Lentz SR (2002) Structure of cerebral arterioles in cystathionine beta-synthase-deficient mice. Circ Res 91:931–937PubMedCrossRefGoogle Scholar
  13. Baumbach GL, Sigmund CD, Faraci FM (2003) Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen. Hypertension 41:50–55PubMedCrossRefGoogle Scholar
  14. Baumbach GL, Sigmund CD, Faraci FM (2004) Structure of cerebral arterioles in mice deficient in expression of the gene for endothelial nitric oxide synthase. Circ Res 95:822–829PubMedCrossRefGoogle Scholar
  15. Baumbach GL, Didion SP, Faraci FM (2006) Hypertrophy of cerebral arterioles in mice deficient in expression of the gene for CuZn superoxide dismutase. Stroke 37:1850–1855PubMedCrossRefGoogle Scholar
  16. Beyer AM, Baumbach GL, Halabi CM, Modrick ML, Lynch CM, Gerhold TD, Ghoneim SM, de Lange WJ, Keen HL, Tsai YS, Maeda N, Sigmund CD, Faraci FM (2008a) Interference with PPARgamma signaling causes cerebral vascular dysfunction, hypertrophy, and remodeling. Hypertension 51:867–871PubMedPubMedCentralCrossRefGoogle Scholar
  17. Beyer AM, de Lange WJ, Halabi CM, Modrick ML, Keen HL, Faraci FM, Sigmund CD (2008b) Endothelium-specific interference with peroxisome proliferator activated receptor gamma causes cerebral vascular dysfunction in response to a high-fat diet. Circ Res 103:654–661PubMedPubMedCentralCrossRefGoogle Scholar
  18. Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE (2014) Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension 63:572–579PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bloch S, Obari D, Girouard H (2015) Angiotensin and neurovascular coupling: beyond hypertension. Microcirculation 22:159–167PubMedGoogle Scholar
  20. Bugnicourt JM, Da Silveira C, Bengrine A, Godefroy O, Baumbach G, Sevestre H, Bode-Boeger SM, Kielstein JT, Massy ZA, Chillon JM (2011) Chronic renal failure alters endothelial function in cerebral circulation in mice. Am J Physiol 301:H1143–H1152Google Scholar
  21. Burton AC (1972) Physiology and biophysics of the circulation. Year Book Medical Publishers, 1–226Google Scholar
  22. Cacciapuoti F (2013) Lowering homocysteine levels with folic acid and B-vitamins do not reduce early atherosclerosis, but could interfere with cognitive decline and Alzheimer’s disease. J Thromb Thrombolysis 36:258–262PubMedCrossRefGoogle Scholar
  23. Calcinaghi N, Wyss MT, Jolivet R, Singh A, Keller AL, Winnik S, Fritschy JM, Buck A, Matter CM, Weber B (2013) Multimodal imaging in rats reveals impaired neurovascular coupling in sustained hypertension. Stroke 44:1957–1964PubMedCrossRefGoogle Scholar
  24. Capone C, Faraco G, Anrather J, Zhou P, Iadecola C (2010) Cyclooxygenase 1-derived prostaglandin E2 and EP1 receptors are required for the cerebrovascular dysfunction induced by angiotensin II. Hypertension 55:911–917PubMedPubMedCentralCrossRefGoogle Scholar
  25. Capone C, Faraco G, Park L, Cao X, Davisson RL, Iadecola C (2011) The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am J Physiol 300:H397–H407CrossRefGoogle Scholar
  26. Chan SL, Baumbach GL (2013a) Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles. Front Physiol 4:133PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chan SL, Baumbach GL (2013b) Nox2 deficiency prevents hypertension-induced vascular dysfunction and hypertrophy in cerebral arterioles. Int J Hypertens 2013:793630PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chan SL, Cipolla M (2015) Conducted vasodilation in brain parenchymal arterioles is impaired during chronic hypertension (Abstract). FASEB J. 29(949):947Google Scholar
  29. Chan SL, Tabellion A, Bagrel D, Perrin-Sarrado C, Capdeville-Atkinson C, Atkinson J (2008) Impact of chronic treatment with red wine polyphenols (RWP) on cerebral arterioles in the spontaneous hypertensive rat. J Cardiovasc Pharmacol 51:304–310PubMedCrossRefGoogle Scholar
  30. Chan SL, Umesalma S, Baumbach GL (2015) Epidermal growth factor receptor is critical for angiotensin II-mediated hypertrophy in cerebral arterioles. Hypertension 65:806–812PubMedCrossRefGoogle Scholar
  31. Chan SL, Sweet JG, Cipolla MJ (2013) Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension. FASEB J 27:3917–3927PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen J, Zacharek A, Zhang C, Jiang H, Li Y, Roberts C, Lu M, Kapke A, Chopp M (2005) Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J Neurosci 25:2366–2375PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM (2014) A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3:e000787PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chillon JM, Baumbach GL (2001) Effects of an angiotensin-converting enzyme inhibitor and a beta-blocker on cerebral arteriolar dilatation in hypertensive rats. Hypertension 37:1388–1393PubMedCrossRefGoogle Scholar
  35. Chillon JM, Ghoneim S, Baumbach GL (1997) Effects of chronic nitric oxide synthase inhibition on cerebral arterioles in rats. Hypertension 30:1097–1104PubMedCrossRefGoogle Scholar
  36. Cipolla MJ (2009) The cerebral circulation. Morgan & Claypool Life Sciences, San Rafael (CA), pp 1–59Google Scholar
  37. Cipolla MJ, Bullinger LV (2008) Reactivity of brain parenchymal arterioles after ischemia and reperfusion. Microcirculation 15:495–501PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cipolla MJ, Smith J, Kohlmeyer MM, Godfrey JA (2009) SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke 40:1451–1457PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cipolla MJ, Chan SL, Sweet J, Tavares MJ, Gokina N, Brayden JE (2014) Postischemic reperfusion causes smooth muscle calcium sensitization and vasoconstriction of parenchymal arterioles. Stroke 45:2425–2430PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dabertrand F, Kroigaard C, Bonev AD, Cognat E, Dalsgaard T, Domenga-Denier V, Hill-Eubanks DC, Brayden JE, Joutel A, Nelson MT (2015) Potassium channelopathy-like defect underlies early-stage cerebrovascular dysfunction in a genetic model of small vessel disease. Proc Natl Acad Sci 112:E796–E805PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dalkara T (2015) PanVascular Medicine. In: Lanzer P (ed) Cerebral microcirculation: an introduction. Springer, Berlin, pp 655–680Google Scholar
  42. Dalkara T, Alarcon-Martinez L (2015) Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res 1623:3–17PubMedCrossRefGoogle Scholar
  43. Daneman R, Keller A (2015) Pericytes in vascular development and function. In: Schmidt MHH (ed) Endothelial Signaling in Development and Disease. Springer, New York, pp 65–92CrossRefGoogle Scholar
  44. Dayal S, Arning E, Bottiglieri T, Boger RH, Sigmund CD, Faraci FM, Lentz SR (2004) Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke 35:1957–1962PubMedCrossRefGoogle Scholar
  45. Dayal S, Devlin AM, McCaw RB, Liu ML, Arning E, Bottiglieri T, Shane B, Faraci FM, Lentz SR (2005) Cerebral vascular dysfunction in methionine synthase-deficient mice. Circulation 112:737–744PubMedCrossRefGoogle Scholar
  46. Dayal S, Blokhin IO, Erger RA, Jensen M, Arning E, Stevens JW, Bottiglieri T, Faraci FM, Lentz SR (2014) Protective vascular and cardiac effects of inducible nitric oxide synthase in mice with hyperhomocysteinemia. PLoS One 9:e107734PubMedPubMedCentralCrossRefGoogle Scholar
  47. De Silva TM, Modrick ML, Ketsawatsomkron P, Lynch C, Chu Y, Pelham CJ, Sigmund CD, Faraci FM (2014) Role of peroxisome proliferator-activated receptor-gamma in vascular muscle in the cerebral circulation. Hypertension 64:1088–1093PubMedPubMedCentralCrossRefGoogle Scholar
  48. De Silva TM, Lynch CM, Grobe JL, Faraci FM (2015a) Activation of the central renin angiotensin system (RAS) causes selective cerebrovascular dysfunction (Abstract). FASEB J 29(646):644Google Scholar
  49. De Silva TM, Pena Silva RA, Faraci FM (2015b) Endothelium, the blood-brain barrier, and hypertension. In: Girouard H (ed) Arterial hypertension and brain as an end-organ target. Springer, SwitzerlandGoogle Scholar
  50. Devlin AM, Arning E, Bottiglieri T, Faraci FM, Rozen R, Lentz SR (2004) Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 103:2624–2629PubMedCrossRefGoogle Scholar
  51. Didion SP, Ryan MJ, Didion LA, Fegan PE, Sigmund CD, Faraci FM (2002) Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res 91:938–944PubMedCrossRefGoogle Scholar
  52. Didion SP, Lynch CM, Baumbach GL, Faraci FM (2005) Impaired endothelium-dependent responses and enhanced influence of Rho-kinase in cerebral arterioles in type II diabetes. Stroke 36:342–347PubMedCrossRefGoogle Scholar
  53. Didion SP, Kinzenbaw DA, Schrader LI, Faraci FM (2006) Heterozygous CuZn superoxide dismutase deficiency produces a vascular phenotype with aging. Hypertension 48:1072–1079PubMedCrossRefGoogle Scholar
  54. Didion SP, Lynch CM, Faraci FM (2007) Cerebral vascular dysfunction in TallyHo mice: a new model of Type II diabetes. Am J Physiol 292:H1579–H1583Google Scholar
  55. Dietrich HH, Xiang C, Han BH, Zipfel GJ, Holtzman DM (2010) Soluble amyloid-beta, effect on cerebral arteriolar regulation and vascular cells. Mol Neurodegener 5:15PubMedPubMedCentralCrossRefGoogle Scholar
  56. Erdos B, Snipes JA, Miller AW, Busija DW (2004) Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes 53:1352–1359PubMedCrossRefGoogle Scholar
  57. Ergul A, Li W, Elgebaly MM, Bruno A, Fagan SC (2009) Hyperglycemia, diabetes and stroke: focus on the cerebrovasculature. Vascul Pharmacol 51:44–49PubMedPubMedCentralCrossRefGoogle Scholar
  58. Faber JE, Zhang H, Lassance-Soares RM, Prabhakar P, Najafi AH, Burnett MS, Epstein SE (2011) Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol 31:1748–1756PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fan Y, Lan L, Zheng L, Ji X, Lin J, Zeng J, Huang R, Sun J (2015a) Spontaneous white matter lesion in brain of stroke-prone renovascular hypertensive rats: a study from MRI, pathology and behavior. Metabolic Brain Dis 30:1479–1486CrossRefGoogle Scholar
  60. Fan Y, Yang X, Tao Y, Lan L, Zheng L, Sun J (2015b) Tight junction disruption of blood-brain barrier in white matter lesions in chronic hypertensive rats. NeuroReport 26:1039–1043PubMedCrossRefGoogle Scholar
  61. Fang Q, Sun H, Arrick DM, Mayhan WG (2006) Inhibition of NADPH oxidase improves impaired reactivity of pial arterioles during chronic exposure to nicotine. J Appl Physiol 100:631–636PubMedCrossRefGoogle Scholar
  62. Faraci F (2011a) Cerebral vascular dysfunction with aging. In: Masoro EJ (ed) Handbook of the biology of aging, 7th edn. Academic Press, Burlington, pp 405–418CrossRefGoogle Scholar
  63. Faraci FM (2011b) Protecting against vascular disease in brain. Am J Physiol 300:H1566–H1582Google Scholar
  64. Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66:8–17PubMedCrossRefGoogle Scholar
  65. Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 78:53–97PubMedGoogle Scholar
  66. Faraci FM, Mayhan WG, Heistad DD (1987) Segmental vascular responses to acute hypertension in cerebrum and brain stem. Am J Physiol 252:H738–H742PubMedGoogle Scholar
  67. Faraci FM, Modrick ML, Lynch CM, Didion LA, Fegan PE, Didion SP (2006) Selective cerebral vascular dysfunction in Mn-SOD-deficient mice. J Appl Physiol 100:2089–2093PubMedCrossRefGoogle Scholar
  68. Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci 107:22290–22295PubMedPubMedCentralCrossRefGoogle Scholar
  69. Fisher CM (1969) The arterial lesions underlying lacunes. Acta Neuropathol 12:1–15CrossRefGoogle Scholar
  70. Fujii K, Heistad DD, Faraci FM (1991) Flow-mediated dilatation of the basilar artery in vivo. Circ Res 69:697–705PubMedCrossRefGoogle Scholar
  71. Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N (2015) Pericytes are involved in the pathogenesis of CADASIL. Ann Neurol. doi: 10.1002/ana.24512 PubMedCentralGoogle Scholar
  72. Girouard H, Park L, Anrather J, Zhou P, Iadecola C (2006) Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through Nox-2-derived radicals. Arterioscler Thromb Vasc Biol 26:826–832PubMedCrossRefGoogle Scholar
  73. Girouard H, Park L, Anrather J, Zhou P, Iadecola C (2007) Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II. Arterioscler Thromb Vasc Biol 27:303–309PubMedCrossRefGoogle Scholar
  74. Girouard H, Lessard A, Capone C, Milner TA, Iadecola C (2008) The neurovascular dysfunction induced by angiotensin II in the mouse neocortex is sexually dimorphic. Am J Physiol Heart Circ Physiol 294:H156–H163PubMedCrossRefGoogle Scholar
  75. Golding EM, Steenberg ML, Contant CF Jr, Krishnappa I, Robertson CS, Bryan RM Jr (1999) Cerebrovascular reactivity to CO2 and hypotension after mild cortical impact injury. Amer J Physiol 277:H1457–H1466PubMedGoogle Scholar
  76. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S, American Heart Association Stroke Council, C.o.E., Prevention, C.o.C.N.C.o.C.R., Intervention, Council on Cardiovascular, S., Anesthesia (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42:2672–2713PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gottesman RF, Schneider AL, Albert M, Alonso A, Bandeen-Roche K, Coker L, Coresh J, Knopman D, Power MC, Rawlings A, Sharrett AR, Wruck LM, Mosley TH (2014) Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study. JAMA Neurol 71:1218–1227PubMedPubMedCentralCrossRefGoogle Scholar
  78. Grobe JL, Buehrer BA, Hilzendeger AM, Liu X, Davis DR, Xu D, Sigmund CD (2011) Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension 57:600–607PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hajdu MA, Heistad DD, Siems JE, Baumbach GL (1990) Effects of aging on mechanics and composition of cerebral arterioles in rats. Circ Res 66:1747–1754PubMedCrossRefGoogle Scholar
  80. Halabi CM, Beyer AM, de Lange WJ, Keen HL, Baumbach GL, Faraci FM, Sigmund CD (2008) Interference with PPAR gamma function in smooth muscle causes vascular dysfunction and hypertension. Cell Metabol 7:215–226CrossRefGoogle Scholar
  81. Hall CB, Verghese J, Sliwinski M, Chen Z, Katz M, Derby C, Lipton RB (2005) Dementia incidence may increase more slowly after age 90: Results from the Bronx Aging Study. Neurology 65:882–886PubMedCrossRefGoogle Scholar
  82. Han BH, Zhou ML, Johnson AW, Singh I, Liao F, Vellimana AK, Nelson JW, Milner E, Cirrito JR, Basak J, Yoo M, Dietrich HH, Holtzman DM, Zipfel GJ (2015) Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proc Natl Acad Sci 112:E881–E890PubMedPubMedCentralCrossRefGoogle Scholar
  83. Harper SL, Bohlen HG (1984) Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats. Hypertension 6:408–419PubMedCrossRefGoogle Scholar
  84. Harper SL, Bohlen HG, Rubin MJ (1984) Arterial and microvascular contributions to cerebral cortical autoregulation in rats. Am J Physiol 246:H17–H24PubMedGoogle Scholar
  85. Hatake K, Kakishita E, Wakabayashi I, Sakiyama N, Hishida S (1990) Effect of aging on endothelium-dependent vascular relaxation of isolated human basilar artery to thrombin and bradykinin. Stroke 21:1039–1043PubMedCrossRefGoogle Scholar
  86. Hill MA, Meininger GA (2012) Arteriolar vascular smooth muscle cells: mechanotransducers in a complex environment. Int J Biochem Cell Biol 44:1505–1510PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the normal and ischemic brain Is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87:95–110PubMedCrossRefGoogle Scholar
  88. Hillman EM (2014) Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 37:161–181PubMedPubMedCentralCrossRefGoogle Scholar
  89. Hurn PD, Traystman RJ, Shoukas AA, Jones MD Jr (1993) Pial microvascular hemodynamics in anemia. Am J Physiol 264:H2131–H2135PubMedGoogle Scholar
  90. Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80:844–866PubMedCrossRefGoogle Scholar
  91. Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E, Younkin S, Borchelt DR, Hsiao KK, Carlson GA (1999) SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nature Neurosci 2:157–161PubMedCrossRefGoogle Scholar
  92. Iddings JA, Kim KJ, Zhou Y, Higashimori H, Filosa JA (2015) Enhanced parenchymal arteriole tone and astrocyte signaling protect neurovascular coupling mediated parenchymal arteriole vasodilation in the spontaneously hypertensive rat. J Cerebral Blood Flow Metab 35:1127–1136CrossRefGoogle Scholar
  93. Iida H, Iida M, Takenaka M, Fujiwara H, Dohi S (2006) Angiotensin II type 1 (AT1)-receptor blocker prevents impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats. Life Sci 78:1310–1316PubMedCrossRefGoogle Scholar
  94. Iida H, Iida M, Takenaka M, Fukuoka N, Dohi S (2008) Rho-kinase inhibitor and nicotinamide adenine dinucleotide phosphate oxidase inhibitor prevent impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats. J Renin-Angiotensin-Aldosterone Syst 9:89–94PubMedCrossRefGoogle Scholar
  95. Jackman K, Iadecola C (2014) Neurovascular regulation in the ischemic brain. Antioxid Redox Signal 22:149–160CrossRefGoogle Scholar
  96. Jennings JR, Muldoon MF, Ryan C, Price JC, Greer P, Sutton-Tyrrell K, van der Veen FM, Meltzer CC (2005) Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology 64:1358–1365PubMedCrossRefGoogle Scholar
  97. Joutel A (2015) The NOTCH3-ECD cascade hypothesis of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy disease. Neurol Clin Neurosci 3:1–6CrossRefGoogle Scholar
  98. Joutel A, Faraci FM (2014) Cerebral small vessel disease: Insights and opportunities from mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 45:1215–1221PubMedPubMedCentralCrossRefGoogle Scholar
  99. Joutel A, Monet-Lepretre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, Lemaire-Carrette B, Domenga V, Schedl A, Lacombe P, Hubner N (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 120:433–445PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jung S, Gilgen M, Slotboom J, El-Koussy M, Zubler C, Kiefer C, Leudi R, Mono ML, Heldner MR, Weck A, Mordasini P, Schroth G, Mattle HP, Arnold M, Gralla J, Fischer U (2013) Factors that determine penumbral tissue loss in acute ischaemic stroke. Brain 136:3554–3560PubMedCrossRefGoogle Scholar
  101. Kadel KA, Heistad DD, Faraci FM (1990) Effects of endothelin on blood vessels of the brain and choroid plexus. Brain Res 518:78–82PubMedCrossRefGoogle Scholar
  102. Kalani A, Kamat PK, Familtseva A, Chaturvedi P, Muradashvili N, Narayanan N, Tyagi SC, Tyagi N (2014) Role of microRNA29b in blood-brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism. J Cerebral Blood Flow Metab 34:1212–1222CrossRefGoogle Scholar
  103. Kamat PK, Vacek JC, Kalani A, Tyagi N (2015) Homocysteine induced cerebrovascular dysfunction: a link to Alzheimer’s disease etiology. Open Neurol J 9:9–14PubMedPubMedCentralCrossRefGoogle Scholar
  104. Kamath AF, Chauhan AK, Kisucka J, Dole VS, Loscalzo J, Handy DE, Wagner DD (2006) Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood 107:591–593PubMedPubMedCentralCrossRefGoogle Scholar
  105. Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PM, Thomas WG (2015) Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli. Pharmacol Rev 67:754–819PubMedCrossRefGoogle Scholar
  106. Katusic ZS, Austin SA (2014) Endothelial nitric oxide: protector of a healthy mind. Eur Heart J 35:888–894PubMedPubMedCentralCrossRefGoogle Scholar
  107. Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, Iadecola C (2004) Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res 95:1019–1026PubMedCrossRefGoogle Scholar
  108. Kim JM, Lee H, Chang N (2002) Hyperhomocysteinemia due to short-term folate deprivation is related to electron microscopic changes in the rat brain. J Nutr 132:3418–3421PubMedGoogle Scholar
  109. Kitayama J, Yi C, Faraci FM, Heistad DD (2006) Modulation of dilator responses of cerebral arterioles by extracellular superoxide dismutase. Stroke 37:2802–2806PubMedCrossRefGoogle Scholar
  110. Kitayama J, Faraci FM, Lentz SR, Heistad DD (2007) Cerebral vascular dysfunction during hypercholesterolemia. Stroke 38:2136–2141PubMedCrossRefGoogle Scholar
  111. Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J (2006) Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol 5:735–741PubMedCrossRefGoogle Scholar
  112. Koide M, Bonev AD, Nelson MT, Wellman GC (2012) Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Proc Natl Acad Sci 109:E1387–E1395PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kontos HA, Wei EP (1992) Endothelium-dependent responses after experimental brain injury. J Neurotrauma 9:349–354PubMedCrossRefGoogle Scholar
  114. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr (1978) Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 234:H371–H383PubMedGoogle Scholar
  115. Ku JM, Andrews ZB, Barsby T, Reichenbach A, Lemus MB, Drummond GR, Sleeman MW, Spencer SJ, Sobey CG, Miller AA (2015) Ghrelin-related peptides exert protective effects in the cerebral circulation of male mice through a nonclassical ghrelin receptor(s). Endocrinology 156:280–290PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, Iadecola C (2007) Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci 27:7083–7093PubMedCrossRefGoogle Scholar
  117. Launer LJ, Masaki K, Petrovitch H, Foley D, Havlik RJ (1995) The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. J Amer Med Assoc 274:1846–1851CrossRefGoogle Scholar
  118. Li W, Prakash R, Chawla D, Du W, Didion SP, Filosa JA, Zhang Q, Brann DW, Lima VV, Tostes RC, Ergul A (2013) Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am J Physiol 304:R1001–R1008CrossRefGoogle Scholar
  119. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT-A, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood Iii HD, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang Y-H, Khatibzadeh S, Khoo J-P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Hanafiah KM, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CDH, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope Iii CA, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJC, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJL, Ezzati M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260PubMedPubMedCentralCrossRefGoogle Scholar
  120. Liu TT (2013) Neurovascular factors in resting-state functional MRI. Neuroimage 80:339–348PubMedPubMedCentralCrossRefGoogle Scholar
  121. Lloyd EE, Durgan DJ, Martini SR, Bryan RM (2015) Pathological effects of obstructive apneas during the sleep cycle in an animal model of cerebral small vessel disease. Hypertension 66:913–917PubMedCrossRefGoogle Scholar
  122. Longden TA, Dabertrand F, Hill-Eubanks DC, Hammack SE, Nelson MT (2014) Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function. Proc Natl Acad Sci 111:7462–7467PubMedPubMedCentralCrossRefGoogle Scholar
  123. Lu FP, Lin KP, Kuo HK (2009) Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One 4:e4144PubMedPubMedCentralCrossRefGoogle Scholar
  124. Lynch CM, Kinzenbaw DA, Chen X, Zhan S, Mezzetti E, Filosa J, Ergul A, Faulkner JL, Faraci FM, Didion SP (2013) Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke 44:3195–3201PubMedPubMedCentralCrossRefGoogle Scholar
  125. Maron BA, Loscalzo J (2009) The treatment of hyperhomocysteinemia. Annu Rev Med 60:39–54PubMedPubMedCentralCrossRefGoogle Scholar
  126. Martin C (2014) Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals. Frontiers Neurosci 8:211CrossRefGoogle Scholar
  127. Mayhan WG (1992) Role of prostaglandin H2-thromboxane A2 in responses of cerebral arterioles during chronic hypertension. Am J Physiol 262:H539–H543PubMedGoogle Scholar
  128. Mayhan WG, Faraci FM (1990) Cerebral vasoconstrictor responses to serotonin during chronic hypertension. Hypertension 15:872–876PubMedCrossRefGoogle Scholar
  129. Mayhan WG, Patel KP (1995) Acute effects of glucose on reactivity of cerebral microcirculation: role of activation of protein kinase C. Am J Physiol 269:H1297–H1302PubMedGoogle Scholar
  130. Mayhan WG, Faraci FM, Heistad DD (1987a) Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol 253:H1435–H1440PubMedGoogle Scholar
  131. Mayhan WG, Faraci FM, Heistad DD (1987b) Mechanisms of protection of the blood-brain barrier during acute hypertension in chronically hypertensive rats. Hypertension 9:III101-105CrossRefGoogle Scholar
  132. Mayhan WG, Faraci FM, Heistad DD (1988) Responses of cerebral arterioles to adenosine 5′-diphosphate, serotonin, and the thromboxane analogue U-46619 during chronic hypertension. Hypertension 12:556–561PubMedCrossRefGoogle Scholar
  133. Mayhan WG, Faraci FM, Baumbach GL, Heistad DD (1990) Effects of aging on responses of cerebral arterioles. Am J Physiol 258:H1138–H1143PubMedGoogle Scholar
  134. Mayhan WG, Simmons LK, Sharpe GM (1991) Mechanism of impaired responses of cerebral arterioles during diabetes mellitus. Am J Physiol 260:H319–H326PubMedGoogle Scholar
  135. Mayhan WG, Arrick DM, Sharpe GM, Patel KP, Sun H (2006) Inhibition of NAD(P)H oxidase alleviates impaired NOS-dependent responses of pial arterioles in type 1 diabetes mellitus. Microcirculation 13:567–575PubMedCrossRefGoogle Scholar
  136. Mayhan WG, Arrick DM, Sharpe GM, Sun H (2008) Age-related alterations in reactivity of cerebral arterioles: role of oxidative stress. Microcirculation 15:225–236PubMedCrossRefGoogle Scholar
  137. Menon BK, Smith EE, Coutts SB, Welsh DG, Faber JE, Goyal M, Hill MD, Demchuk AM, Damani Z, Cho KH, Chang HW, Hong JH, Sohn SI (2013) Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol 74:241–248PubMedPubMedCentralGoogle Scholar
  138. Miyamoto N, Pham LD, Seo JH, Kim KW, Lo EH, Arai K (2014) Crosstalk between cerebral endothelium and oligodendrocyte. Cell Mol Life Sci 71:1055–1066PubMedPubMedCentralCrossRefGoogle Scholar
  139. Modrick ML, Didion SP, Sigmund CD, Faraci FM (2009) Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. Am J Physiol 296:H1914–H1919Google Scholar
  140. Moore SM, Zhang H, Maeda N, Doerschuk CM, Faber JE (2015) Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury. Angiogenesis 18:265–281PubMedCrossRefGoogle Scholar
  141. Nakagawa T, Hasegawa Y, Uekawa K, Ma M, Katayama T, Sueta D, Toyama K, Kataoka K, Koibuchi N, Maeda M, Kuratsu J, Kim-Mitsuyama S (2013) Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats. J Am Heart Assoc 2:e000375PubMedPubMedCentralCrossRefGoogle Scholar
  142. Nakahata K, Kinoshita H, Tokinaga Y, Ishida Y, Kimoto Y, Dojo M, Mizumoto K, Ogawa K, Hatano Y (2006) Vasodilation mediated by inward rectifier K+ channels in cerebral microvessels of hypertensive and normotensive rats. Anesth Analg 102:571–576PubMedCrossRefGoogle Scholar
  143. Nakahata K, Kinoshita H, Azma T, Matsuda N, Hama-Tomioka K, Haba M, Hatano Y (2008) Propofol restores brain microvascular function impaired by high glucose via the decrease in oxidative stress. Anesthesiology 108:269–275PubMedCrossRefGoogle Scholar
  144. Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA (1992) Oxygen radicals in cerebral ischemia. Am J Physiol 263:H1356–H1362PubMedGoogle Scholar
  145. Nystoriak, MA, O’Connor, KP, Sonkusare, SK, Brayden, JE, Nelson, MT, Wellman, GC (2011) Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. Am J Physiol 300:H803-812Google Scholar
  146. Pantoni L, Gorelick PB (2014) Cerebral small vessel disease. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  147. Park L, Anrather J, Girouard H, Zhou P, Iadecola C (2007) Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 27:1908–1918PubMedCrossRefGoogle Scholar
  148. Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, Younkin L, Younkin S, Carlson G, McEwen BS, Iadecola C (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci 105:1347–1352PubMedPubMedCentralCrossRefGoogle Scholar
  149. Park IS, Meno JR, Witt CE, Chowdhary A, Nguyen TS, Winn HR, Ngai AC, Britz GW (2009) Impairment of intracerebral arteriole dilation responses after subarachnoid hemorrhage. J Neurosurg 111:1008–1013PubMedCrossRefGoogle Scholar
  150. Park L, Wang G, Moore J, Girouard H, Zhou P, Anrather J, Iadecola C (2014) The key role of transient receptor potential melastatin-2 channels in amyloid-beta-induced neurovascular dysfunction. Nat Commun 5:5318PubMedPubMedCentralCrossRefGoogle Scholar
  151. Pires PW, Dams Ramos CM, Matin N, Dorrance AM (2013) The effects of hypertension on the cerebral circulation. Am J Physiol 304:H1598–H1614Google Scholar
  152. Pires PW, Jackson WF, Dorrance AM (2015) Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol 309:H127–H136Google Scholar
  153. Plesea IE, Camenita A, Georgescu CC, Enache SD, Zaharia B, Georgescu CV, Tenovici M (2005) Study of cerebral vascular structures in hypertensive intracerebral haemorrhage. Rom J Morphol Embryol 46:249–256PubMedGoogle Scholar
  154. Poggesi A, Pasi M, Pescini F, Pantoni L, Inzitari D (2015) Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review. J Cerebral Blood Flow Metab. doi: 10.1038/jcbfm.2015.116 Google Scholar
  155. Prakash R, Johnson M, Fagan SC, Ergul A (2013) Cerebral neovascularization and remodeling patterns in two different models of type 2 diabetes. PLoS One 8:e56264PubMedPubMedCentralCrossRefGoogle Scholar
  156. Price TO, Eranki V, Banks WA, Ercal N, Shah GN (2012) Topiramate treatment protects blood-brain barrier pericytes from hyperglycemia-induced oxidative damage in diabetic mice. Endocrinology 153:362–372PubMedPubMedCentralCrossRefGoogle Scholar
  157. Prins ND, Scheltens P (2015) White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 11:157–165PubMedCrossRefGoogle Scholar
  158. Renkin EM (1984) Control of microcirculation and blood-tissue exchange. In: Handbook of physiology. The cardiovascular system. Microcirculation. American Physiological Society, Bethesda, Chapter 14, pp 627–687Google Scholar
  159. Rhodehouse BC, Mayo JN, Beard RS Jr, Chen CH, Bearden SE (2013) Opening of the blood-brain barrier before cerebral pathology in mild hyperhomocysteinemia. PLoS One 8:e63951PubMedPubMedCentralCrossRefGoogle Scholar
  160. Ridder DA, Wenzel J, Muller K, Tollner K, Tong XK, Assmann JC, Stroobants S, Weber T, Niturad C, Fischer L, Lembrich B, Wolburg H, Grand’Maison M, Papadopoulos P, Korpos E, Truchetet F, Rades D, Sorokin LM, Schmidt-Supprian M, Bedell BJ, Pasparakis M, Balschun D, D’Hooge R, Loscher W, Hamel E, Schwaninger M (2015) Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. J Exp Med 212:1529–1549PubMedPubMedCentralCrossRefGoogle Scholar
  161. Rosenblum WI, El-Sabban F, Loria RM (1981) Platelet aggregation in the cerebral and mesenteric microcirculation of mice with genetically determined diabetes. Diabetes 30:89–92PubMedCrossRefGoogle Scholar
  162. Rost NS (2013) White matter disease. In: Sharma P, Meschia JF (eds) Stroke genetics. Springer, London, pp 171–186CrossRefGoogle Scholar
  163. Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD (2004) PPAR gamma agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 43:661–666PubMedCrossRefGoogle Scholar
  164. Sabbatini M, Strocchi P, Vitaioli L, Amenta F (2001) Microanatomical changes of intracerebral arteries in spontaneously hypertensive rats: A model of cerebrovascular disease of the elderly. Mech Ageing Dev 122:1257–1268PubMedCrossRefGoogle Scholar
  165. Sangiorgi S, De Benedictis A, Protasoni M, Manelli A, Reguzzoni M, Cividini A, Dell’orbo C, Tomei G, Balbi S (2013) Early-stage microvascular alterations of a new model of controlled cortical traumatic brain injury: 3D morphological analysis using scanning electron microscopy and corrosion casting. J Neurosurg 118:763–774PubMedCrossRefGoogle Scholar
  166. Saravia F, Revsin Y, Lux-Lantos V, Beauquis J, Homo-Delarche F, De Nicola AF (2004) Oestradiol restores cell proliferation in dentate gyrus and subventricular zone of streptozotocin-diabetic mice. J Neuroendocrinol 16:704–710PubMedCrossRefGoogle Scholar
  167. Shi Y, Savarese G, Perrone-Filardi P, Luscher TF, Camici GG (2014) Enhanced age-dependent cerebrovascular dysfunction is mediated by adaptor protein p66. Int J Cardiol 175:446–450PubMedCrossRefGoogle Scholar
  168. Shima T, Hossmann KA, Date H (1983) Pial arterial pressure in cats following middle cerebral artery occlusion. 1. Relationship to blood flow, regulation of blood flow and electrophysiological function. Stroke 14:713–719PubMedCrossRefGoogle Scholar
  169. Shin HK, Jones PB, Garcia-Alloza M, Borrelli L, Greenberg SM, Bacskai BJ, Frosch MP, Hyman BT, Moskowitz MA, Ayata C (2007) Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain 130:2310–2319PubMedCrossRefGoogle Scholar
  170. Straub SV, Girouard H, Doetsch PE, Hannah RM, Wilkerson MK, Nelson MT (2009) Regulation of intracerebral arteriolar tone by Kv channels: Effects of glucose and PKC. Am J Physiol 297:C788–C796CrossRefGoogle Scholar
  171. Sugawara A, Takeuchi K, Uruno A, Ikeda Y, Arima S, Kudo M, Sato K, Taniyama Y, Ito S (2001) Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Endocrinology 142:3125–3134PubMedGoogle Scholar
  172. Sun H, Mayhan WG (2001) Temporal effect of alcohol consumption on reactivity of pial arterioles: role of oxygen radicals. Am J Physiol 280:H992–H1001Google Scholar
  173. Sun H, Zheng H, Molacek E, Fang Q, Patel KP, Mayhan WG (2006) Role of NAD(P)H oxidase in alcohol-induced impairment of endothelial nitric oxide synthase-dependent dilation of cerebral arterioles. Stroke 37:495–500PubMedCrossRefGoogle Scholar
  174. Suzuki K, Masawa N, Sakata N, Takatama M (2003) Pathologic evidence of microvascular rarefaction in the brain of renal hypertensive rats. J Stroke Cerebrovasc Dis 12:8–16PubMedCrossRefGoogle Scholar
  175. Swan GE, DeCarli C, Miller BL, Reed T, Wolf PA, Jack LM, Carmelli D (1998) Association of midlife blood pressure to late-life cognitive decline and brain morphology. Neurology 51:986–993PubMedCrossRefGoogle Scholar
  176. Tabas I, Garcia-Cardena G, Owens GK (2015) Recent insights into the cellular biology of atherosclerosis. J Cell Biol 209:13–22PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tamaki K, Mayhan W, Heistad D (1986) Effects of vasodilator stimuli on resistance of large and small cerebral vessels. Am J Physiol 251:H1176–H1182PubMedGoogle Scholar
  178. Tamaki K, Saku Y, Ogata J (1992) Effects of angiotensin and atrial natriuretic peptide on the cerebral circulation. J Cerebral Blood Flow Metab 12:318–325CrossRefGoogle Scholar
  179. Tan XL, Xue YQ, Ma T, Wang X, Li JJ, Lan L, Malik KU, McDonald MP, Dopico AM, Liao FF (2015) Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener 10:24PubMedPubMedCentralCrossRefGoogle Scholar
  180. Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH (2015) Hypertension: Renin-angiotensin-aldosterone system alterations. Circ Res 116:960–975CrossRefGoogle Scholar
  181. Tietz S, Engelhardt B (2015) Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209:493–506PubMedPubMedCentralCrossRefGoogle Scholar
  182. Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, Monsell SE, Kukull WA, Trojanowski JQ (2013) Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 136:2697–2706PubMedPubMedCentralCrossRefGoogle Scholar
  183. Ueno M, Sakamoto H, Tomimoto H, Akiguchi I, Onodera M, Huang CL, Kanenishi K (2004) Blood-brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. Acta Neuropathol 107:532–538PubMedCrossRefGoogle Scholar
  184. Vetri F, Xu H, Paisansathan C, Pelligrino DA (2012) Impairment of neurovascular coupling in type 1 diabetes mellitus in rats is linked to PKC modulation of BKCa and Kir channels. Am J Physiol 302:H1274–H1284Google Scholar
  185. Vollmer DG, Takayasu M, Dacey RG Jr (1992) An in vitro comparative study of conducting vessels and penetrating arterioles after experimental subarachnoid hemorrhage in the rabbit. J Neurosurg 77:113–119PubMedCrossRefGoogle Scholar
  186. Walker AE, Henson GD, Reihl KD, Nielson EI, Morgan RG, Lesniewski LA, Donato AJ (2014) Beneficial effects of lifelong caloric restriction on endothelial function are greater in conduit arteries compared to cerebral resistance arteries. Age 36:559–569PubMedPubMedCentralCrossRefGoogle Scholar
  187. Walsh MP, Cole WC (2013) The role of actin filament dynamics in the myogenic response of cerebral resistance arteries. J Cereb Blood Flow Metab 33:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  188. Wang M, Yang H, Zheng LY, Zhang Z, Tang YB, Wang GL, Du YH, Lv XF, Liu J, Zhou JG, Guan YY (2012) Downregulation of TMEM16A calcium-activated chloride channel contributes to cerebrovascular remodeling during hypertension by promoting basilar smooth muscle cell proliferation. Circulation 125:697–707PubMedCrossRefGoogle Scholar
  189. Wang T, Li Y, Guo X, Huang D, Ma L, Wang DJ, Lou X (2015) Reduced perfusion in normal-appearing white matter in mild to moderate hypertension as revealed by 3D pseudocontinuous arterial spin labeling. J Magn Reson Imaging. doi: 10.1002/jmri.25023 Google Scholar
  190. Wardlaw JM, Smith C, Dichgans M (2013) Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 12:483–497PubMedCrossRefGoogle Scholar
  191. Weaver J, Jalal FY, Yang Y, Thompson J, Rosenberg GA, Liu KJ (2014) Tissue oxygen is reduced in white matter of spontaneously hypertensive-stroke prone rats: a longitudinal study with electron paramagnetic resonance. J Cerebral Blood Flow Metab 34:890–896CrossRefGoogle Scholar
  192. Wei EP, Kontos HA, Christman CW, DeWitt DS, Povlishock JT (1985) Superoxide generation and reversal of acetylcholine-induced cerebral arteriolar dilation after acute hypertension. Circ Res 57:781–787PubMedCrossRefGoogle Scholar
  193. Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG, Ehmke H (2015) Immune mechanisms in arterial hypertension. J Am Soc Nephrol pii: ASN.2015050562Google Scholar
  194. Werber AH, Heistad DD (1984) Effects of chronic hypertension and sympathetic nerves on the cerebral microvasculature of stroke-prone spontaneously hypertensive rats. Circ Res 55:286–294PubMedCrossRefGoogle Scholar
  195. Yakubu MA, Leffler CW (1997) 5-Hydroxytryptamine-induced vasoconstriction after cerebral hematoma in piglets. Pediatr Res 41:317–320PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of MedicineUniversity of IowaIowa CityUSA
  2. 2.Iowa City Veterans Affairs Healthcare SystemIowa CityUSA
  3. 3.Biomedicine Discovery Institute, Department of PharmacologyMonash UniversityClaytonAustralia
  4. 4.Department of Internal Medicine, 340F EMRB, Carver College of MedicineUniversity of IowaIowa CityUSA

Personalised recommendations