Cellular and Molecular Neurobiology

, Volume 36, Issue 2, pp 219–232 | Cite as

Neurovascular and Cognitive failure in Alzheimer’s Disease: Benefits of Cardiovascular Therapy

  • Edith Hamel
  • Jessika Royea
  • Brice Ongali
  • Xin-Kang Tong
Review Paper


Alzheimer’s disease (AD) is a multifactorial and multifaceted disease for which we currently have very little to offer since there is no curative therapy, with only limited disease-modifying drugs. Recent studies in AD mouse models that recapitulate the amyloid-β (Aβ) pathology converge to demonstrate that it is possible to salvage cerebrovascular function with a variety of drugs and, particularly, therapies used to treat cardiovascular diseases such as hypercholesterolemia and hypertension. These drugs can reestablish dilatory function mediated by various endothelial and smooth muscle ion channels as well as nitric oxide availability, benefits that result in normalized brain perfusion. These cerebrovascular benefits would favor brain perfusion, which may help maintain neuronal function and, possibly, delay cognitive failure. However, restoring cerebrovascular function in AD mouse models was not necessarily accompanied by rescue of cognitive deficits related to spatial learning and memory. The results with cardiovascular therapies rather suggest that drugs originally designed to treat cardiovascular diseases that concurrently restore cerebrovascular and cognitive function do so through their pleiotropic effects. Specifically, recent findings suggest that these drugs act directly on brain cells and neuronal pathways involved in memory formation, hence, working simultaneously albeit independently on neuronal and vascular targets. These findings may help select medications for patients with cardiovascular diseases at risk of developing AD with increasing age. Further, they may identify molecular targets for recovering memory pathways that bear potential for new therapeutic avenues.


Vascular oxidative stress Cardiovascular therapy Cerebrovascular reactivity Memory pathways Statin Angiotensin receptor blocker 


  1. Abrahamson EE, Foley LM, Dekosky ST, Hitchens TK, Ho C, Kochanek PM et al (2013) Cerebral blood flow changes after brain injury in human amyloid-beta knock-in mice. J Cereb Blood Flow Metab 33(6):826–833PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T et al (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276(52):48623–48626PubMedCrossRefGoogle Scholar
  3. Albiston AL, Fernando RN, Yeatman HR, Burns P, Ng L, Daswani D et al (2010) Gene knockout of insulin-regulated aminopeptidase: loss of the specific binding site for angiotensin IV and age-related deficit in spatial memory. Neurobiol Learn Mem 93(1):19–30PubMedCrossRefGoogle Scholar
  4. Albiston AL, Diwakarla S, Fernando RN, Mountford SJ, Yeatman HR, Morgan B et al (2011) Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br J Pharmacol 164(1):37–47PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ashby EL, Kehoe PG (2013) Current status of renin-aldosterone angiotensin system-targeting anti-hypertensive drugs as therapeutic options for Alzheimer’s disease. Expert Opin Investig Drugs 22(10):1229–1242PubMedCrossRefGoogle Scholar
  6. Aucoin JS, Jiang P, Aznavour N, Tong XK, Buttini M, Descarries L et al (2005) Selective cholinergic denervation, independent from oxidative stress, in a mouse model of Alzheimer’s disease. Neuroscience 132(1):73–86PubMedCrossRefGoogle Scholar
  7. Badhwar A, Lerch JP, Hamel E, Sled JG (2013) Impaired structural correlates of memory in Alzheimer’s disease mice. NeuroImage Clin 6(3):290–300CrossRefGoogle Scholar
  8. Beckmann N, Schuler A, Mueggler T, Meyer EP, Wiederhold KH, Staufenbiel M et al (2003) Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer’s disease. J Neurosci 23(24):8453–8459PubMedGoogle Scholar
  9. Benicky J, Sanchez-Lemus E, Pavel J, Saavedra JM (2009) Anti-inflammatory effects of angiotensin receptor blockers in the brain and the periphery. Cell Mol Neurobiol 29(6–7):781–792PubMedCrossRefGoogle Scholar
  10. Benoist CC, Wright JW, Zhu M, Appleyard SM, Wayman GA, Harding JW (2011) Facilitation of hippocampal synaptogenesis and spatial memory by C-terminal truncated Nle1-angiotensin IV analogs. J Pharmacol Exp Ther 339(1):35–44PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bloch S, Obari D, Girouard H (2015) Angiotensin and neurovascular coupling: beyond hypertension. Microcirculation 22(3):159–167PubMedGoogle Scholar
  12. Braszko JJ, Walesiuk A, Wielgat P (2006) Cognitive effects attributed to angiotensin II may result from its conversion to angiotensin IV. J Renin Angiotensin Aldosterone Syst 7(3):168–174PubMedCrossRefGoogle Scholar
  13. Butterfield DA (2011) Atorvastatin and Abeta(1-40): not as simple as cholesterol reduction in brain and relevance to Alzheimer disease. Exp Neurol 228(1):15–18PubMedCrossRefGoogle Scholar
  14. Cantin S, Villien M, Moreaud O, Tropres I, Keignart S, Chipon E et al (2011) Impaired cerebral vasoreactivity to CO2 in Alzheimer’s disease using BOLD fMRI. Neuroimage 58(2):579–587PubMedCrossRefGoogle Scholar
  15. Carlsson CM, Gleason CE, Hess TM, Moreland KA, Blazel HM, Koscik RL et al (2008) Effects of simvastatin on cerebrospinal fluid biomarkers and cognition in middle-aged adults at risk for Alzheimer’s disease. J Alzheimers Dis 13(2):187–197PubMedGoogle Scholar
  16. Chao LL, Buckley ST, Kornak J, Schuff N, Madison C, Yaffe K et al (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24(1):19–27PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chauhan NB, Siegel GJ, Feinstein DL (2004) Effects of lovastatin and pravastatin on amyloid processing and inflammatory response in TgCRND8 brain. Neurochem Res 29(10):1897–1911PubMedCrossRefGoogle Scholar
  18. Claassen JA (2015) New cardiovascular targets to prevent late onset Alzheimer disease. Eur J Pharmacol. doi: 10.1016/j.ejphar.2015.05.022 PubMedGoogle Scholar
  19. Cramer C, Haan MN, Galea S, Langa KM, Kalbfleisch JD (2008) Use of statins and incidence of dementia and cognitive impairment without dementia in a cohort study. Neurology 71(5):344–350PubMedPubMedCentralCrossRefGoogle Scholar
  20. Danielyan L, Klein R, Hanson LR, Buadze M, Schwab M, Gleiter CH et al (2010) Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res 13(2–3):195–201PubMedCrossRefGoogle Scholar
  21. Davies NM, Kehoe PG, Ben-Shlomo Y, Martin RM (2011) Associations of anti-hypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J Alzheimers Dis 26(4):699–708PubMedGoogle Scholar
  22. Davis S, Bozon B, Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142(1–2):17–30PubMedCrossRefGoogle Scholar
  23. de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3:184–190PubMedCrossRefGoogle Scholar
  24. den Abeelen AS, Lagro J, van Beek AH, Claassen JA (2014) Impaired cerebral autoregulation and vasomotor reactivity in sporadic Alzheimer’s disease. Curr Alzheimer Res 11(1):11–17CrossRefGoogle Scholar
  25. Deschaintre Y, Richard F, Leys D, Pasquier F (2009) Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology 73(9):674–680PubMedCrossRefGoogle Scholar
  26. Diez J (2006) Review of the molecular pharmacology of Losartan and its possible relevance to stroke prevention in patients with hypertension. Clin Ther 28(6):832–848PubMedCrossRefGoogle Scholar
  27. Dorr A, Sahota B, Chinta LV, Brown ME, Lai AY, Ma K et al (2012) Amyloid-beta-dependent compromise of microvascular structure and function in a model of Alzheimer’s disease. Brain 135(Pt 10):3039–3050PubMedCrossRefGoogle Scholar
  28. Erdos B, Snipes JA, Miller AW, Busija DW (2004) Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes 53(5):1352–1359PubMedCrossRefGoogle Scholar
  29. Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD (1999) Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 354(9182):919–920PubMedCrossRefGoogle Scholar
  30. Farkas E, Luiten PGM (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611PubMedCrossRefGoogle Scholar
  31. Ferrington L, Miners JS, Palmer LE, Bond SM, Povey JE, Kelly PA et al (2011) Angiotensin II-inhibiting drugs have no effect on intraneuronal Abeta or oligomeric Abeta levels in a triple transgenic mouse model of Alzheimer’s disease. Am J Transl Res 3(2):197–208PubMedPubMedCentralGoogle Scholar
  32. Ferrington L, Palmer LE, Love S, Horsburgh KJ, Kelly PA, Kehoe PG (2012) Angiotensin II-inhibition: effect on Alzheimer’s pathology in the aged triple transgenic mouse. Am J Transl Res 4(2):151–164PubMedPubMedCentralGoogle Scholar
  33. Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE et al (2003) Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J Neurosci 23(27):9116–9122PubMedGoogle Scholar
  34. Fogari R, Mugellini A, Zoppi A, Derosa G, Pasotti C, Fogari E et al (2003) Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J Hum Hypertens 17(11):781–785PubMedCrossRefGoogle Scholar
  35. Fonseca AC, Proenca T, Resende R, Oliveira CR, Pereira CM (2009) Neuroprotective effects of statins in an in vitro model of Alzheimer’s disease. J Alzheimers Dis 17(3):503–517PubMedGoogle Scholar
  36. Fournier A, Oprisiu-Fournier R, Serot JM, Godefroy O, Achard JM, Faure S et al (2009) Prevention of dementia by antihypertensive drugs: how AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors. Expert Rev Neurother 9(9):1413–1431PubMedCrossRefGoogle Scholar
  37. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100(1):328–335PubMedCrossRefGoogle Scholar
  38. Haag MD, Hofman A, Koudstaal PJ, Stricker BH, Breteler MM (2009) Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J Neurol Neurosurg Psychiatry 80(1):13–17PubMedCrossRefGoogle Scholar
  39. Haberl RL, Decker PJ, Einhaupl KM (1991) Angiotensin degradation products mediate endothelium-dependent dilation of rabbit brain arterioles. Circ Res 68(6):1621–1627PubMedCrossRefGoogle Scholar
  40. Hamel E, Nicolakakis N, Aboulkassim T, Ongali B, Tong XK (2008) Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer’s disease. Exp Physiol 93(1):116–120PubMedCrossRefGoogle Scholar
  41. Han BH, Zhou ML, Abousaleh F, Brendza RP, Dietrich HH, Koenigsknecht-Talboo J et al (2008) Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid-beta peptide, partial restoration via gamma-secretase inhibition. J Neurosci 28(50):13542–13550PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R et al (2013) Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-beta from the mouse brain. Aging Cell 12(2):224–236PubMedCrossRefGoogle Scholar
  43. Hebert F, Grand’maison M, Ho MK, Lerch JP, Hamel E, Bedell BJ (2013) Cortical atrophy and hypoperfusion in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34(6):1644–1652PubMedCrossRefGoogle Scholar
  44. Hemming ML, Selkoe DJ, Farris W (2007) Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid beta-protein metabolism in mouse models of Alzheimer disease. Neurobiol Dis 26(1):273–281PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hirao K, Ohnishi T, Hirata Y, Yamashita F, Mori T, Moriguchi Y et al (2005) The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28(4):1014–1021PubMedCrossRefGoogle Scholar
  46. Hock C, Villringer K, Muller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S et al (1997) Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)-correlation with simultaneous rCBF-PET measurements. Brain Res 755(2):293–303PubMedCrossRefGoogle Scholar
  47. Holmberg E, Nordstrom T, Gross M, Kluge B, Zhang SX, Doolen S (2006) Simvastatin promotes neurite outgrowth in the presence of inhibitory molecules found in central nervous system injury. J Neurotrauma 23(9):1366–1378PubMedCrossRefGoogle Scholar
  48. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102PubMedCrossRefGoogle Scholar
  49. Hughes M, Snetkov V, Rose RS, Trousil S, Mermoud JE, Dingwall C (2010) Neurite-like structures induced by mevalonate pathway blockade are due to the stability of cell adhesion foci and are enhanced by the presence of APP. J Neurochem 114(3):832–842PubMedCrossRefGoogle Scholar
  50. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nature Neuroscience Reviews 5:347–360CrossRefGoogle Scholar
  51. Iadecola C (2010) The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 120(3):287–296PubMedPubMedCentralCrossRefGoogle Scholar
  52. Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4):844–866PubMedCrossRefGoogle Scholar
  53. Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E et al (1999) SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 2:157–161PubMedCrossRefGoogle Scholar
  54. Jellinger KA (2007) The enigma of mixed dementia. Alzheimer’s Dement J Alzheimer’s Assoc 3(1):40–53CrossRefGoogle Scholar
  55. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356(9242):1627–1631PubMedCrossRefGoogle Scholar
  56. Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S et al (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci 4(3):289–296PubMedCrossRefGoogle Scholar
  57. Kanekiyo T, Liu CC, Shinohara M, Li J, Bu G (2012) LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer’s amyloid-beta. J Neurosci 32(46):16458–16465PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kehoe PG, Miners S, Love S (2009) Angiotensins in Alzheimer’s disease—friend or foe? Trends Neurosci 32(12):619–628PubMedCrossRefGoogle Scholar
  59. Kelley BJ, Glasser S (2014) Cognitive effects of statin medications. CNS Drugs 28(5):411–419PubMedCrossRefGoogle Scholar
  60. Kitaguchi H, Tomimoto H, Ihara M, Shibata M, Uemura K, Kalaria RN et al (2009) Chronic cerebral hypoperfusion accelerates amyloid beta deposition in APPSwInd transgenic mice. Brain Res 1294:202–210PubMedCrossRefGoogle Scholar
  61. Kouznetsova E, Klingner M, Sorger D, Sabri O, Grossmann U, Steinbach J et al (2006) Developmental and amyloid plaque-related changes in cerebral cortical capillaries in transgenic Tg2576 Alzheimer mice. Int J Dev Neurosci 24(2–3):187–193PubMedCrossRefGoogle Scholar
  62. Kozuki M, Kurata T, Miyazaki K, Morimoto N, Ohta Y, Ikeda Y et al (2011) Atorvastatin and pitavastatin protect cerebellar Purkinje cells in AD model mice and preserve the cytokines MCP-1 and TNF-alpha. Brain Res 1388:32–38PubMedCrossRefGoogle Scholar
  63. Kramar EA, Krishnan R, Harding JW, Wright JW (1998) Role of nitric oxide in angiotensin IV-induced increases in cerebral blood flow. Regul Pept 74(2–3):185–192PubMedCrossRefGoogle Scholar
  64. Kurata T, Miyazaki K, Kozuki M, Panin VL, Morimoto N, Ohta Y et al (2011) Atorvastatin and pitavastatin improve cognitive function and reduce senile plaque and phosphorylated tau in aged APP mice. Brain Res 1371:161–170PubMedCrossRefGoogle Scholar
  65. Kurata T, Kawai H, Miyazaki K, Kozuki M, Morimoto N, Ohta Y et al (2012a) Statins have therapeutic potential for the treatment of Alzheimer’s disease, likely via protection of the neurovascular unit in the AD brain. J Neurol Sci. doi: 10.1016/j.jns.2012.06.011 Google Scholar
  66. Kurata T, Miyazaki K, Kozuki M, Morimoto N, Ohta Y, Ikeda Y et al (2012b) Atorvastatin and pitavastatin reduce senile plaques and inflammatory responses in a mouse model of Alzheimer’s disease. Neurol Res 34(6):601–610PubMedCrossRefGoogle Scholar
  67. Lacoste B, Tong XK, Lahjouji K, Couture R, Hamel E (2013) Cognitive and cerebrovascular improvements following kinin B1 receptor blockade in Alzheimer’s disease mice. J Neuroinflammation 10:57PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lai AY, Dorr A, Thomason LA, Koletar MM, Sled JG, Stefanovic B et al (2015) Venular degeneration leads to vascular dysfunction in a transgenic model of Alzheimer’s disease. Brain 138(Pt 4):1046–1058PubMedCrossRefGoogle Scholar
  69. Langbaum JB, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS et al (2009) Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage 45(4):1107–1116PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lange-Asschenfeldt C, Kojda G (2008) Alzheimer’s disease, cerebrovascular dysfunction and the benefits of exercise: from vessels to neurons. Exp Gerontol 43(6):499–504PubMedCrossRefGoogle Scholar
  71. Lee J, Albiston AL, Allen AM, Mendelsohn FA, Ping SE, Barrett GL et al (2004) Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience 124(2):341–349PubMedCrossRefGoogle Scholar
  72. Li L, Cao D, Kim H, Lester R, Fukuchi K (2006) Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60(6):729–739PubMedCrossRefGoogle Scholar
  73. Li G, Larson EB, Sonnen JA, Shofer JB, Petrie EC, Schantz A et al (2007) Statin therapy is associated with reduced neuropathologic changes of Alzheimer disease. Neurology 69(9):878–885PubMedCrossRefGoogle Scholar
  74. Li G, Shofer JB, Rhew IC, Kukull WA, Peskind ER, McCormick W et al (2010a) Age-varying association between statin use and incident Alzheimer’s disease. J Am Geriatr Soc 58(7):1311–1317PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE et al (2010b) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 340:b5465PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ et al (2011) Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 76(17):1485–1491PubMedCrossRefGoogle Scholar
  77. Li H, Guo Q, Inoue T, Polito VA, Tabuchi K, Hammer RE et al (2014) Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol Neurodegener 9:28PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lin AL, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ et al (2013) Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab 33(9):1412–1421PubMedPubMedCentralCrossRefGoogle Scholar
  80. Liu J, Liu S, Tanabe C, Maeda T, Zou K, Komano H (2014) Differential effects of angiotensin II receptor blockers on Abeta generation. Neurosci Lett 567:51–56PubMedCrossRefGoogle Scholar
  81. Llorens-Martin M, Blazquez-Llorca L, Benavides-Piccione R, Rabano A, Hernandez F, Avila J et al (2014) Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Frontiers Neuroanat 8:38Google Scholar
  82. Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T et al (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24(7):1132–1146PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mans RA, Chowdhury N, Cao D, McMahon LL, Li L (2010) Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice. Neuroscience 166(2):435–444PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mans RA, McMahon LL, Li L (2012) Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. Neuroscience 202:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  85. McGuinness B, Craig D, Bullock R, Passmore P (2009) Statins for the prevention of dementia. Cochrane Database Syst Rev 2:CD003160PubMedGoogle Scholar
  86. McGuinness B, Craig D, Bullock R, Malouf R, Passmore P (2014) Statins for the treatment of dementia. Cochrane Database Syst Rev 7:CD007514PubMedGoogle Scholar
  87. Melrose RJ, Campa OM, Harwood DG, Osato S, Mandelkern MA, Sultzer DL (2009) The neural correlates of naming and fluency deficits in Alzheimer’s disease: an FDG-PET study. Int J Geriatr Psychiatry 24(8):885–893PubMedPubMedCentralCrossRefGoogle Scholar
  88. Merlini M, Meyer EP, Ulmann-Schuler A, Nitsch RM (2011) Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol 122(3):293–311PubMedPubMedCentralCrossRefGoogle Scholar
  89. Metais C, Brennan K, Mably AJ, Scott M, Walsh DM, Herron CE (2014) Simvastatin treatment preserves synaptic plasticity in AbetaPPswe/PS1dE9 mice. J Alzheimers Dis 39(2):315–329PubMedGoogle Scholar
  90. Michel MC, Foster C, Brunner HR, Liu L (2013) A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev 65(2):809–848PubMedCrossRefGoogle Scholar
  91. Mihos CG, Pineda AM, Santana O (2014) Cardiovascular effects of statins, beyond lipid-lowering properties. Pharmacol Res 88:12–19PubMedCrossRefGoogle Scholar
  92. Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A et al (2008) Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun 375(3):446–449PubMedCrossRefGoogle Scholar
  93. Mogi M, Iwanami J, Horiuchi M (2012) Roles of brain Angiotensin II in cognitive function and dementia. Int J Hypertens 2012:169649PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of Aβ1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058PubMedGoogle Scholar
  95. Naveri L, Stromberg C, Saavedra JM (1994) Angiotensin IV reverses the acute cerebral blood flow reduction after experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab 14(6):1096–1099PubMedCrossRefGoogle Scholar
  96. Nicolakakis N, Hamel E (2011) Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab 31(6):1354–1370PubMedPubMedCentralCrossRefGoogle Scholar
  97. Nicolakakis N, Aboulkassim T, Ongali B, Lecrux C, Fernandes P, Rosa-Neto P et al (2008) Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J Neurosci 28(37):9287–9296PubMedCrossRefGoogle Scholar
  98. Niwa K, Carlson GA, Iadecola C (2000a) Exogenous A beta1-40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J Cereb Blood Flow Metab 20(12):1659–1668PubMedCrossRefGoogle Scholar
  99. Niwa K, Younkin L, Ebeling C, Turner SK, Westaway D, Younkin S et al (2000b) Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci USA 97(17):9735–9740PubMedPubMedCentralCrossRefGoogle Scholar
  100. Niwa K, Kazama K, Younkin L, Younkin SG, Carlson GA, Iadecola C (2002a) Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am J Physiol Heart Circ Physiol 283:H315–H323PubMedCrossRefGoogle Scholar
  101. Niwa K, Kazama K, Younkin SG, Carlson GA, Iadecola C (2002b) Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol Dis 9:61–68PubMedCrossRefGoogle Scholar
  102. Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Papadopoulos P, Rosa-Neto P et al (2014) Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol Dis 68:126–136PubMedCrossRefGoogle Scholar
  103. Park IH, Hwang EM, Hong HS, Boo JH, Oh SS, Lee J et al (2003) Lovastatin enhances Abeta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging 24(5):637–643PubMedCrossRefGoogle Scholar
  104. Park L, Anrather J, Forster C, Kazama K, Carlson GA, Iadecola C (2004) Aβ-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J Cerebr Blood Flow Metab. 24:334–342CrossRefGoogle Scholar
  105. Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S et al (2005) NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide. J Neurosci 25(7):1769–1777PubMedCrossRefGoogle Scholar
  106. Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH et al (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA 105(4):1347–1352PubMedPubMedCentralCrossRefGoogle Scholar
  107. Park L, Wang G, Zhou P, Zhou J, Pitstick R, Previti ML et al (2011) Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-beta. Proc Natl Acad Sci USA 108(12):5063–5068PubMedPubMedCentralCrossRefGoogle Scholar
  108. Park L, Zhou J, Zhou P, Pistick R, El Jamal S, Younkin L et al (2013) Innate immunity receptor CD36 promotes cerebral amyloid angiopathy. Proc Natl Acad Sci USA 110(8):3089–3094PubMedPubMedCentralCrossRefGoogle Scholar
  109. Park L, Wang G, Moore J, Girouard H, Zhou P, Anrather J et al (2014) The key role of transient receptor potential melastatin-2 channels in amyloid-beta-induced neurovascular dysfunction. Nat Commun 5:5318PubMedPubMedCentralCrossRefGoogle Scholar
  110. Peters F, Collette F, Degueldre C, Sterpenich V, Majerus S, Salmon E (2009) The neural correlates of verbal short-term memory in Alzheimer’s disease: an fMRI study. Brain 132(Pt 7):1833–1846PubMedCrossRefGoogle Scholar
  111. Poduslo JF, Curran GL, Wengenack TM, Malester B, Duff K (2001) Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 8(4):555–567PubMedCrossRefGoogle Scholar
  112. Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342(8873):697–699PubMedCrossRefGoogle Scholar
  113. Pooler AM, Xi SC, Wurtman RJ (2006) The 3-hydroxy-3-methylglutaryl co-enzyme A reductase inhibitor pravastatin enhances neurite outgrowth in hippocampal neurons. J Neurochem 97(3):716–723PubMedCrossRefGoogle Scholar
  114. Rockwood K, Kirkland S, Hogan DB, MacKnight C, Merry H, Verreault R et al (2002) Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 59(2):223–227PubMedCrossRefGoogle Scholar
  115. Rosengarten B, Paulsen S, Molnar S, Kaschel R, Gallhofer B, Kaps M (2006) Acetylcholine esterase inhibitor donepezil improves dynamic cerebrovascular regulation in Alzheimer patients. J Neurol 253(1):58–64PubMedCrossRefGoogle Scholar
  116. Roy A, Jana M, Kundu M, Corbett GT, Rangaswamy SB, Mishra RK et al (2015) HMG-CoA reductase inhibitors bind to PPARalpha to upregulate neurotrophin expression in the brain and improve memory in mice. Cell Metab 22(2):253–265PubMedCrossRefGoogle Scholar
  117. Royea J, Zhang L, Ozcelik S, Tong X-K, Hamel E (2015). Insulin regulated aminopeptidase: a potential cerebrovascular and neuroprotective mechanism in a mouse model of Alzheimer’s disease. In: Brain 2015, the XXVIIth international symposium on cerebral blood flow, metabolism and functionGoogle Scholar
  118. Sagare AP, Bell RD, Zlokovic BV (2012) Neurovascular dysfunction and faulty amyloid beta-peptide clearance in Alzheimer disease. Cold Spring Harbor Perspect Med 2(10):a011452CrossRefGoogle Scholar
  119. Samuel F, Reddy J, Kaimal R, Segovia V, Mo H, Hynds DL (2014) Inhibiting geranylgeranylation increases neurite branching and differentially activates cofilin in cell bodies and growth cones. Mol Neurobiol 50(1):49–59PubMedPubMedCentralCrossRefGoogle Scholar
  120. Scheibel AB, Duong TH, Jacobs R (1989) Alzheimer’s disease as a capillary dementia. Ann Med 21(2):103–107PubMedCrossRefGoogle Scholar
  121. Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV (2013) Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 23(3):303–310PubMedPubMedCentralCrossRefGoogle Scholar
  122. Simons M, Schwarzler F, Lutjohann D, von Bergmann K, Beyreuther K, Dichgans J et al (2002) Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 52(3):346–350PubMedCrossRefGoogle Scholar
  123. Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ et al (2012) Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336(6081):597–601PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sparks DL, Sabbagh M, Connor D, Soares H, Lopez J, Stankovic G et al (2006) Statin therapy in Alzheimer’s disease. Acta Neurol Scand Suppl 185:78–86PubMedCrossRefGoogle Scholar
  125. Takeda S, Sato N, Takeuchi D, Kurinami H, Shinohara M, Niisato K et al (2009) Angiotensin receptor blocker prevented beta-amyloid-induced cognitive impairment associated with recovery of neurovascular coupling. Hypertension 54(6):1345–1352PubMedCrossRefGoogle Scholar
  126. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nature Rev Neurol 11(8):457–470CrossRefGoogle Scholar
  127. Tong X-K, Hamel E (2015) Simvastatin improves adult hippocampal neuronal maturation by up-regulating the Wnt/β-catenin pathway in a mouse model of Alzheimer’s disease. In: Brain 2015, the XXVIIth international symposium on cerebral blood flow, metabolism and functionGoogle Scholar
  128. Tong XK, Nicolakakis N, Kocharyan A, Hamel E (2005) Vascular remodeling versus amyloid β-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer’s disease. J Neurosci 25(48):11165–11174PubMedCrossRefGoogle Scholar
  129. Tong XK, Nicolakakis N, Fernandes P, Ongali B, Brouillette J, Quirion R et al (2009) Simvastatin improves cerebrovascular function and counters soluble amyloid-beta, inflammation and oxidative stress in aged APP mice. Neurobiol Dis 35(3):406–414PubMedCrossRefGoogle Scholar
  130. Tong XK, Lecrux C, Hamel E (2012) Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci 32(14):4705–4715PubMedCrossRefGoogle Scholar
  131. Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F et al (2009) Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. Hypertension 54(4):782–787PubMedCrossRefGoogle Scholar
  132. Van Dorpe J, Smeijers L, Dewachter I, Nuyens D, Spittaels K, Van den Haute C et al (2000) Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol 157(4):1283–1298PubMedPubMedCentralCrossRefGoogle Scholar
  133. Vanderheyden PML (2009) From angiotensin IV binding site to AT4 receptor. Mol Cell Endocrinol 302(2):159–166PubMedCrossRefGoogle Scholar
  134. Villapol S, Saavedra JM (2015) Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens 28(3):289–299PubMedCrossRefGoogle Scholar
  135. Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X et al (2007) Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest 117(11):3393–3402PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wang C, Chen T, Li G, Zhou L, Sha S, Chen L (2015) Simvastatin prevents beta-amyloid25-35-impaired neurogenesis in hippocampal dentate gyrus through alpha7nAChR-dependent cascading PI3 K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate. Neuropharmacology 97:122–132PubMedCrossRefGoogle Scholar
  137. Wayner MJ, Armstrong DL, Phelix CF, Wright JW, Harding JW (2001) Angiotensin IV enhances LTP in rat dentate gyrus in vivo. Peptides 22(9):1403–1414PubMedCrossRefGoogle Scholar
  138. Wenzel P, Schulz E, Munzel T (2009) Protein kinase C-inhibiting properties of the losartan metabolite EXP3179 make the difference. Hypertension 54(4):707–709PubMedCrossRefGoogle Scholar
  139. Wiesmann M, Kiliaan AJ, Claassen JA (2013) Vascular aspects of cognitive impairment and dementia. J Cereb Blood Flow Metab 33(11):1696–1706PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wisniewski T, Goni F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85(6):1162–1176PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 57(10):1439–1443PubMedCrossRefGoogle Scholar
  142. Wright JW, Harding JW (2008) The angiotensin AT4 receptor subtype as a target for the treatment of memory dysfunction associated with Alzheimer’s disease. J Renin Angiotensin Aldosterone Syst 9(4):226–237PubMedCrossRefGoogle Scholar
  143. Wright JW, Harding JW (2010) The brain RAS and Alzheimer’s disease. Exp Neurol 223(2):326–333PubMedCrossRefGoogle Scholar
  144. Wright JW, Harding JW (2013) The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 465(1):133–151PubMedCrossRefGoogle Scholar
  145. Wright JW, Kawas LH, Harding JW (2015) The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases. Prog Neurobiol 125:26–46PubMedCrossRefGoogle Scholar
  146. Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B et al (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3 K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25(2):130–139PubMedCrossRefGoogle Scholar
  147. Wu H, Mahmood A, Qu C, Xiong Y, Chopp M (2012) Simvastatin attenuates axonal injury after experimental traumatic brain injury and promotes neurite outgrowth of primary cortical neurons. Brain Res 1486:121–130PubMedCrossRefGoogle Scholar
  148. Yezhuvath US, Uh J, Cheng Y, Martin-Cook K, Weiner M, Diaz-Arrastia R et al (2012) Forebrain-dominant deficit in cerebrovascular reactivity in Alzheimer’s disease. Neurobiol Aging 33(1):75–82PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zerbi V, Jansen D, Dederen PJ, Veltien A, Hamans B, Liu Y et al (2013) Microvascular cerebral blood volume changes in aging APP(swe)/PS1(dE9) AD mouse model: a voxel-wise approach. Brain Struct Funct 218(5):1085–1098PubMedCrossRefGoogle Scholar
  150. Zhang L, Papadopoulos P, Hamel E (2013) Endothelial TRPV4 channels mediate dilation of cerebral arteries: impairment and recovery in cerebrovascular pathologies related to Alzheimer’s disease. Br J Pharmacol 170(3):661–670PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28(4):202–208PubMedCrossRefGoogle Scholar
  152. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723–738PubMedPubMedCentralGoogle Scholar
  153. Zlokovic BV, Deane R, Sallstrom J, Chow N, Miano JM (2005) Neurovascular pathways and Alzheimer amyloid beta-peptide. Brain Pathol 15(1):78–83PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Edith Hamel
    • 1
  • Jessika Royea
    • 1
  • Brice Ongali
    • 1
  • Xin-Kang Tong
    • 1
  1. 1.Laboratory of Cerebrovascular Research, Montreal Neurological InstituteMcGill UniversityMontréalCanada

Personalised recommendations