Cellular and Molecular Neurobiology

, Volume 36, Issue 5, pp 657–667 | Cite as

Adipose-Derived Stem Cells Expressing the Neurogenin-2 Promote Functional Recovery After Spinal Cord Injury in Rat

  • Linjun Tang
  • Xiaocheng Lu
  • Ronglan Zhu
  • Tengda Qian
  • Yi Tao
  • Kai Li
  • Jinyu Zheng
  • Penglai Zhao
  • Shuai Li
  • Xi Wang
  • Lixin Li
Original Research


Neurogenin2 (Ngn2) is a proneural gene that directs neuronal differentiation of progenitor cells during development. This study aimed to investigate whether the use of adipose-derived stem cells (ADSCs) over-expressing the Ngn2 transgene (Ngn2–ADSCs) could display the characteristics of neurogenic cells and improve functional recovery in an experimental rat model of SCI. ADSCs from rats were cultured and purified in vitro, followed by genetically modified with the Ngn2 gene. Forty-eight adult female Sprague–Dawley rats were randomly assigned to three groups: the control, ADSCs, and Ngn2–ADSCs groups. The hind-limb motor function of all rats was recorded using the Basso, Beattie, and Bresnahan locomotor rating scale for 8 weeks. Moreover, hematoxylineosin staining and immunohistochemistry were also performed. After neural induction, positive expression rate of NeuN in Ngn2–ADSCs group was upon 90 %. Following transplantation, a great number of ADSCs was found around the center of the injury spinal cord at 1 and 4 weeks, which improved retention of tissue at the lesion site. Ngn2–ADSCs differentiated into neurons, indicated by the expression of neuronal markers, NeuN and Tuj1. Additionally, transplantation of Ngn2–ADSCs upregulated the trophic factors (brain-derived neurotrophic factor and vascular endothelial growth factor), and inhibited the glial scar formation, which was indicated by immunohistochemistry with glial fibrillary acidic protein. Finally, Ngn2–ADSCs-treated animals showed the highest functional recovery among the three groups. These findings suggest that transplantation of Ngn2-overexpressed ADSCs promote the functional recovery from SCI, and improve the local microenvironment of injured cord in a more efficient way than that with ADSCs alone.


Adipose-derived stem cells Neurogenin2 Differentiation Spinal cord injury Functional recovery 



This study was supported by grants from the National Natural Science Foundation of China (No. 81171147), “Xingwei Project” Key Personal Medical Research Foundation of Health Department of Jiangsu Province (No. RC201156), “Six Categories of Key Person” Research Foundation of Jiangsu Province (No. 069), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. JX10231801), and the science and technology plan projects of Jintan (JT2014059).

Compliance with Ethical Standards

Ethical Statement

This study was approved by the Institutional Review Board and Ethics Committee of Nanjing Medical University, and written informed consent was signed by all participants.

Conflict of interest

The authors declare no conflict of interest in this article.

Supplementary material

10571_2015_246_MOESM1_ESM.tif (163 kb)
Supplementary Fig. 1 Immunocytochemistry to detect the expressions of neural marker in GFP-ADSCs, expression of NeuN (A) and Tuj1 (B) in control medium or NeuN (C) and Tuj1 (D) neural induction medium for 7 days. Scale bars represent 100 um. Supplementary material 1 (TIFF 163 kb)


  1. Arboleda D, Forostyak S, Jendelova P, Marekova D, Amemori T, Pivonkova H, Masinova K, Sykova E (2011) Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol 31(7):1113–1122. doi: 10.1007/s10571-011-9712-3 CrossRefPubMedGoogle Scholar
  2. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21CrossRefPubMedGoogle Scholar
  3. Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27(32):8654–8664. doi: 10.1523/JNEUROSCI.1615-07.2007 CrossRefPubMedGoogle Scholar
  4. Blesch A, Lu P, Tuszynski MH (2002) Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res Bull 57(6):833–838CrossRefPubMedGoogle Scholar
  5. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290(5497):1775–1779CrossRefPubMedGoogle Scholar
  6. Bunnell BA, Ylostalo J, Kang SK (2006) Common transcriptional gene profile in neurospheres-derived from pATSCs, pBMSCs, and pNSCs. Biochem Biophys Res Commun 343(3):762–771. doi: 10.1016/j.bbrc.2006.03.033 CrossRefPubMedGoogle Scholar
  7. Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R (2014) Cell-based therapy approaches: the hope for incurable diseases. Regen Med 9(5):649–672. doi: 10.2217/rme.14.35 CrossRefPubMedGoogle Scholar
  8. Chen X, Katakowski M, Li Y, Lu D, Wang L, Zhang L, Chen J, Xu Y, Gautam S, Mahmood A, Chopp M (2002) Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 69(5):687–691. doi: 10.1002/jnr.10334 CrossRefPubMedGoogle Scholar
  9. Chen X, Lepier A, Berninger B, Tolkovsky AM, Herbert J (2012) Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus. PLoS One 7(2):e31547. doi: 10.1371/journal.pone.0031547 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen Y, Tang Y, Vogel LC, Devivo MJ (2013) Causes of spinal cord injury. Topics Spinal Cord Injur Rehabil 19(1):1–8. doi: 10.1310/sci1901-1 CrossRefGoogle Scholar
  11. Chen L, Cui X, Wu Z, Jia L, Yu Y, Zhou Q, Hu X, Xu W, Luo D, Liu J, Xiao J, Yan Q, Cheng L (2014) Transplantation of bone marrow mesenchymal stem cells pretreated with valproic acid in rats with an acute spinal cord injury. Biosci Trends 8(2):111–119CrossRefPubMedGoogle Scholar
  12. Cheng F, Lu XC, Hao HY, Dai XL, Qian TD, Huang BS, Tang LJ, Yu W, Li LX (2014) Neurogenin 2 converts mesenchymal stem cells into a neural precursor fate and improves functional recovery after experimental stroke. Cell Physiol Biochem 33(3):847–858. doi: 10.1159/000358657 CrossRefPubMedGoogle Scholar
  13. Constantini S, Young W (1994) The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. J Neurosurg 80(1):97–111. doi: 10.3171/jns.1994.80.1.0097 CrossRefPubMedGoogle Scholar
  14. Dai X, Lu X, Cheng F, Hao H, Qian T, Yu W, Tang L, Li L (2014) Neurogenin 2 enhances the neuronal differentiation of skin-derived precursors. Int J Neurosci. doi: 10.3109/00207454.2014.935375 Google Scholar
  15. Facchiano F, Fernandez E, Mancarella S, Maira G, Miscusi M, D’Arcangelo D, Cimino-Reale G, Falchetti ML, Capogrossi MC, Pallini R (2002) Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J Neurosurg 97(1):161–168. doi: 10.3171/jns.2002.97.1.0161 CrossRefPubMedGoogle Scholar
  16. Fang Z, Yang Q, Xiong W, Li G, Xiao J, Guo F, Li F, Chen A (2010) Neurogenic differentiation of murine adipose derived stem cells transfected with EGFP in vitro. J Huazhong Univ Sci Technol 30(1):75–80. doi: 10.1007/s11596-010-0113-5 CrossRefGoogle Scholar
  17. Forostyak S, Jendelova P, Sykova E (2013) The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95(12):2257–2270. doi: 10.1016/j.biochi.2013.08.004 CrossRefPubMedGoogle Scholar
  18. Franco Lambert AP, Fraga Zandonai A, Bonatto D, Cantarelli Machado D, Pegas Henriques JA (2009) Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 77(3):221–228. doi: 10.1016/j.diff.2008.10.016 CrossRefPubMedGoogle Scholar
  19. Gierloff M, Nitsche T, Adam-Klages S, Liebs K, Hedderich J, Gassling V, Wiltfang J, Kabelitz D, Acil Y (2014a) In vitro comparison of different carrier materials with rat bone marrow MSCs. Clin Oral Invest 18(1):247–259. doi: 10.1007/s00784-013-0956-9 CrossRefGoogle Scholar
  20. Gierloff M, Petersen L, Oberg HH, Quabius ES, Wiltfang J, Acil Y (2014b) Adipogenic differentiation potential of rat adipose tissue-derived subpopulations of stromal cells. JPRAS 67(10):1427–1435. doi: 10.1016/j.bjps.2014.05.042 PubMedGoogle Scholar
  21. Gorrie CA, Hayward I, Cameron N, Kailainathan G, Nandapalan N, Sutharsan R, Wang J, Mackay-Sim A, Waite PM (2010) Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury. Brain Res 1337:8–20. doi: 10.1016/j.brainres.2010.04.019 CrossRefPubMedGoogle Scholar
  22. Gu YL, Yin LW, Zhang Z, Liu J, Liu SJ, Zhang LF, Wang TH (2012) Neurotrophin expression in neural stem cells grafted acutely to transected spinal cord of adult rats linked to functional improvement. Cell Mol Neurobiol 32(7):1089–1097. doi: 10.1007/s10571-012-9832-4 CrossRefPubMedGoogle Scholar
  23. Hammami I, Chen J, Bronte V, DeCrescenzo G, Jolicoeur M (2012) l-glutamine is a key parameter in the immunosuppression phenomenon. Biochem Biophys Res Commun 425(4):724–729. doi: 10.1016/j.bbrc.2012.07.139 CrossRefPubMedGoogle Scholar
  24. Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8(5):e1000373. doi: 10.1371/journal.pbio.1000373 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ (2009) Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS One 4(6):e5871. doi: 10.1371/journal.pone.0005871 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H (2005) Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 80(2):182–190. doi: 10.1002/jnr.20436 CrossRefPubMedGoogle Scholar
  27. Jia Y, Wu D, Zhang R, Shuang W, Sun J, Hao H, An Q, Liu Q (2014) Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats. Neurosci Lett 573:46–51. doi: 10.1016/j.neulet.2014.05.010 CrossRefPubMedGoogle Scholar
  28. Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R (2005) Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306(2):343–348. doi: 10.1016/j.yexcr.2005.03.015 CrossRefPubMedGoogle Scholar
  29. Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H (2012) Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 114(7):935–939. doi: 10.1016/j.clineuro.2012.02.003 CrossRefPubMedGoogle Scholar
  30. Kim JH, Lee MR, Kim JH, Jee MK, Kang SK (2008) IFATS collection: selenium induces improvement of stem cell behaviors in human adipose-tissue stromal cells via SAPK/JNK and stemness acting signals. Stem Cells 26(10):2724–2734. doi: 10.1634/stemcells.2008-0184 CrossRefPubMedGoogle Scholar
  31. Kokai LE, Marra K, Rubin JP (2014) Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res 163(4):399–408. doi: 10.1016/j.trsl.2013.11.009 CrossRefPubMedGoogle Scholar
  32. Kramer AS, Harvey AR, Plant GW, Hodgetts SI (2013) Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury. Cell Transpl 22(4):571–617. doi: 10.3727/096368912X655208 CrossRefGoogle Scholar
  33. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176(1):57–66. doi: 10.1002/(SICI)1097-4652(199807)176:1<57:AID-JCP7>3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  34. Mehrabani D, Mehrabani G, Zare S, Manafi A (2013) Adipose-derived stem cells (ADSC) and aesthetic surgery: a mini review. World J Plast Surg 2(2):65–70PubMedPubMedCentralGoogle Scholar
  35. Nori S, Okada Y, Yasuda A, Tsuji O, Takahashi Y, Kobayashi Y, Fujiyoshi K, Koike M, Uchiyama Y, Ikeda E, Toyama Y, Yamanaka S, Nakamura M, Okano H (2011) Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci USA 108(40):16825–16830. doi: 10.1073/pnas.1108077108 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ohta M, Suzuki Y, Noda T, Ejiri Y, Dezawa M, Kataoka K, Chou H, Ishikawa N, Matsumoto N, Iwashita Y, Mizuta E, Kuno S, Ide C (2004) Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 187(2):266–278. doi: 10.1016/j.expneurol.2004.01.021 CrossRefPubMedGoogle Scholar
  37. Park CH, Kang JS, Yoon EH, Shim JW, Suh-Kim H, Lee SH (2008) Proneural bHLH neurogenin 2 differentially regulates Nurr1-induced dopamine neuron differentiation in rat and mouse neural precursor cells in vitro. FEBS Lett 582(5):537–542. doi: 10.1016/j.febslet.2008.01.018 CrossRefPubMedGoogle Scholar
  38. Portron S, Merceron C, Gauthier O, Lesoeur J, Sourice S, Masson M, Fellah BH, Geffroy O, Lallemand E, Weiss P, Guicheux J, Vinatier C (2013) Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: application in cartilage tissue repair. PLoS One 8(4):e62368. doi: 10.1371/journal.pone.0062368 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rosen GD, Harry JD (1990) Brain volume estimation from serial section measurements: a comparison of methodologies. J Neurosci Methods 35(2):115–124CrossRefPubMedGoogle Scholar
  40. Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39(1):13–25CrossRefPubMedGoogle Scholar
  41. Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294(2):371–379. doi: 10.1016/S0006-291X(02)00469-2 CrossRefPubMedGoogle Scholar
  42. Schreiber J, Schachner M, Schumacher U, Lorke DE (2013) Extracellular matrix alterations, accelerated leukocyte infiltration and enhanced axonal sprouting after spinal cord hemisection in tenascin-C-deficient mice. Acta Histochem 115(8):865–878. doi: 10.1016/j.acthis.2013.04.009 CrossRefPubMedGoogle Scholar
  43. Sharma HS (2007) Neurotrophic factors in combination: a possible new therapeutic strategy to influence pathophysiology of spinal cord injury and repair mechanisms. Curr Pharm Des 13(18):1841–1874CrossRefPubMedGoogle Scholar
  44. Stenudd M, Sabelstrom H, Frisen J (2015) Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol 72(2):235–237. doi: 10.1001/jamaneurol.2014.2927 CrossRefPubMedGoogle Scholar
  45. Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104(3):365–376CrossRefPubMedGoogle Scholar
  46. Thoma EC, Wischmeyer E, Offen N, Maurus K, Siren AL, Schartl M, Wagner TU (2012) Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS One 7(6):e38651. doi: 10.1371/journal.pone.0038651 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tolwani RJ, Cosgaya JM, Varma S, Jacob R, Kuo LE, Shooter EM (2004) BDNF overexpression produces a long-term increase in myelin formation in the peripheral nervous system. J Neurosci Res 77(5):662–669. doi: 10.1002/jnr.20181 CrossRefPubMedGoogle Scholar
  48. Wang LJ, Zhang RP, Li JD (2014) Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury. Acta Neurochir (Wien) 156(7):1409–1418. doi: 10.1007/s00701-014-2089-6 CrossRefGoogle Scholar
  49. White RE, Jakeman LB (2008) Don’t fence me in: harnessing the beneficial roles of astrocytes for spinal cord repair. Restor Neurol Neurosci 26(2-3):197–214PubMedPubMedCentralGoogle Scholar
  50. Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, Olson L (2003) Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 120(4):951–960CrossRefPubMedGoogle Scholar
  51. Wosnitza M, Hemmrich K, Groger A, Graber S, Pallua N (2007) Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation 75(1):12–23. doi: 10.1111/j.1432-0436.2006.00110.x CrossRefPubMedGoogle Scholar
  52. Yan J, Xu L, Welsh AM, Hatfield G, Hazel T, Johe K, Koliatsos VE (2007) Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med 4(2):e39. doi: 10.1371/journal.pmed.0040039 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ying Z, Roy RR, Zhong H, Zdunowski S, Edgerton VR, Gomez-Pinilla F (2008) BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats. Neuroscience 155(4):1070–1078. doi: 10.1016/j.neuroscience.2008.06.057 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zaminy A, Shokrgozar MA, Sadeghi Y, Norouzian M, Heidari MH, Piryaei A (2013) Transplantation of schwann cells differentiated from adipose stem cells improves functional recovery in rat spinal cord injury. Arch Iran Med 16(9):533–541PubMedGoogle Scholar
  55. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. doi: 10.1089/107632701300062859 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Linjun Tang
    • 1
    • 2
  • Xiaocheng Lu
    • 3
  • Ronglan Zhu
    • 1
  • Tengda Qian
    • 4
  • Yi Tao
    • 1
  • Kai Li
    • 1
  • Jinyu Zheng
    • 1
  • Penglai Zhao
    • 1
  • Shuai Li
    • 1
  • Xi Wang
    • 1
  • Lixin Li
    • 1
  1. 1.Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Department of  NeurosurgeryTongling Municipal HospitalTonglingChina
  3. 3.Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
  4. 4.Department of NeurosurgeryJiangsu University Affiliated Jintan HospitalJintanChina

Personalised recommendations