Advertisement

Cellular and Molecular Neurobiology

, Volume 36, Issue 4, pp 565–576 | Cite as

CHD1L Regulates Cell Cycle, Apoptosis, and Migration in Glioma

  • Jie Sun
  • Li Zhang
  • Hongyu Zhao
  • Xiaojun Qiu
  • Wenjuan Chen
  • Donglin Wang
  • Na Ban
  • Shaochen Fan
  • Chaoyan Shen
  • Xiaojie Xia
  • Bin Ji
  • Yuchan Wang
Original Research

Abstract

Chromodomain helicase/ATPase DNA binding protein 1-like (CHD1L) gene is a newly identified oncogene located at Chr1q21 and it is amplified in many solid tumors. In this study, we intended to investigate the clinical significance of CHD1L expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that CHD1L was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of CHD1L was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier curve indicated that high expression of CHD1L may result in poor prognosis of glioma patients. Accordingly, suppression of CHD1L in glioma cells was shown to induce cell cycle arrest and increase apoptosis. In addition, knockdown of CHD1L significantly accelerated migration and invasion ability of glioma cells. Together our findings suggest that CHD1L is involved in the progression of glioma and may be a novel target for further therapy.

Keywords

CHD1L Glioma Cell cycle Apoptosis Migration 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81201858, 81272789), the National Natural Science Foundation of Jiangsu province (No. BK2012231), and the Nantong Society Undertaking and Technological Innovation (HS2014069).

Compliance with Ethical Standards

Conflict of interest

None.

References

  1. Bork P, Koonin EV (1993) An expanding family of helicases within the ‘DEAD/H’ superfamily. Nucleic Acids Res 21(3):751–752CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen L, Hu L, Chan TH, Tsao GS, Xie D, Huo KK, Fu L, Ma S, Zheng BJ, Guan XY (2009a) Chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1l) gene suppresses the nucleus-to-mitochondria translocation of nur77 to sustain hepatocellular carcinoma cell survival. Hepatology 50(1):122–129. doi: 10.1002/hep.22933 CrossRefPubMedGoogle Scholar
  3. Chen M, Huang JD, Hu L, Zheng BJ, Chen L, Tsang SL, Guan XY (2009b) Transgenic CHD1L expression in mouse induces spontaneous tumors. PLoS One 4(8):e6727. doi: 10.1371/journal.pone.0006727 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen L, Chan TH, Yuan YF, Hu L, Huang J, Ma S, Wang J, Dong SS, Tang KH, Xie D, Li Y, Guan XY (2010) CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Investig 120(4):1178–1191. doi: 10.1172/JCI40665 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cheng W, Su Y, Xu F (2013) CHD1L: a novel oncogene. Mol Cancer 12(1):170. doi: 10.1186/1476-4598-12-170 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fan JH, Feng GG, Huang L, Tang GD, Jiang HX, Xu J (2014) Naofen promotes TNF-alpha-mediated apoptosis of hepatocytes by activating caspase-3 in lipopolysaccharide-treated rats. World J Gastroenterol 20(17):4963–4971. doi: 10.3748/wjg.v20.i17.4963 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ferguson SD (2011) Malignant gliomas: diagnosis and treatment. Disease-a-Month 57(10):558–569. doi: 10.1016/j.disamonth.2011.08.020 CrossRefPubMedGoogle Scholar
  8. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374. doi: 10.1038/nrc1075 CrossRefPubMedGoogle Scholar
  9. Green DR, Chipuk JE (2006) p53 and metabolism: inside the TIGAR. Cell 126(1):30–32. doi: 10.1016/j.cell.2006.06.032 CrossRefPubMedGoogle Scholar
  10. He WP, Zhou J, Cai MY, Xiao XS, Liao YJ, Kung HF, Guan XY, Xie D, Yang GF (2012) CHD1L protein is overexpressed in human ovarian carcinomas and is a novel predictive biomarker for patients survival. BMC Cancer 12:437. doi: 10.1186/1471-2407-12-437 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hyeon J, Ahn S, Park CK (2013) CHD1L is a marker for poor prognosis of hepatocellular carcinoma after surgical resection. Korean J Pathol 47(1):9–15. doi: 10.4132/KoreanJPathol.47.1.9 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ji X, Li J, Zhu L, Cai J, Zhang J, Qu Y, Zhang H, Liu B, Zhao R, Zhu Z (2013) CHD1L promotes tumor progression and predicts survival in colorectal carcinoma. J Surg Res 185(1):84–91. doi: 10.1016/j.jss.2013.05.008 CrossRefPubMedGoogle Scholar
  13. Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118(3):277–279. doi: 10.1016/j.cell.2004.07.011 CrossRefPubMedGoogle Scholar
  14. Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG (2005) The macro domain is an ADP-ribose binding module. EMBO J 24(11):1911–1920. doi: 10.1038/sj.emboj.7600664 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116(4):527–540CrossRefPubMedGoogle Scholar
  16. Liu Y, Wang Y, Cheng C, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q, Shen A (2010) A relationship between p27(kip1) and Skp2 after adult brain injury: implications for glial proliferation. J Neurotrauma 27(2):361–371. doi: 10.1089/neu.2008.0581 CrossRefPubMedGoogle Scholar
  17. Liu Y, Chen Y, Lu X, Wang Y, Duan Y, Cheng C, Shen A (2012) SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol Biol Cell 23(23):4506–4514. doi: 10.1091/mbc.E12-05-0362 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ma NF, Hu L, Fung JM, Xie D, Zheng BJ, Chen L, Tang DJ, Fu L, Wu Z, Chen M, Fang Y, Guan XY (2008) Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology 47(2):503–510. doi: 10.1002/hep.22072 CrossRefPubMedGoogle Scholar
  19. Ryan DP, Owen-Hughes T (2011) Snf2-family proteins: chromatin remodellers for any occasion. Curr Opin Chem Biol 15(5):649–656. doi: 10.1016/j.cbpa.2011.07.022 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sims JS, Ung TH, Neira JA, Canoll P, Bruce JN (2015) Biomarkers for glioma immunotherapy: the next generation. J Neurooncol. doi: 10.1007/s11060-015-1746-9 PubMedGoogle Scholar
  21. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751. doi: 10.1038/onc.2010.215 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Takano S, Shiomoto S, Inoue KY, Ino K, Shiku H, Matsue T (2014) Electrochemical approach for the development of a simple method for detecting cell apoptosis based on caspase-3 activity. Anal Chem 86(10):4723–4728. doi: 10.1021/ac403394z CrossRefPubMedGoogle Scholar
  23. Tao T, Cheng C, Ji Y, Xu G, Zhang J, Zhang L, Shen A (2012) Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-kappaB activation. Mol Biol Cell 23(14):2635–2644. doi: 10.1091/mbc.E11-09-0805 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Taylor LP (2010) Diagnosis, treatment, and prognosis of glioma: five new things. Neurology 75(18 Suppl 1):S28–S32. doi: 10.1212/WNL.0b013e3181fb3661 CrossRefPubMedGoogle Scholar
  25. Tian F, Xu F, Zhang ZY, Ge JP, Wei ZF, Xu XF, Cheng W (2013) Expression of CHD1L in bladder cancer and its influence on prognosis and survival. Tumour Biol 34(6):3687–3690. doi: 10.1007/s13277-013-0951-4 CrossRefPubMedGoogle Scholar
  26. Venkataramanaa NK, Venkatesh PK, Dwarakanath BS, Vani S (2013) Protective effect on normal brain tissue during a combinational therapy of 2-deoxy-d-glucose and hypofractionated irradiation in malignant gliomas. Asian J Neurosurg 8(1):9–14. doi: 10.4103/1793-5482.110274 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, Chen J (2015) The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 17(3):239–255. doi: 10.1016/j.neo.2015.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. doi: 10.1056/NEJMra0708126 CrossRefPubMedGoogle Scholar
  29. Wijnhoven BP, Dinjens WN, Pignatelli M (2000) E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 87(8):992–1005. doi: 10.1046/j.1365-2168.2000.01513.x CrossRefPubMedGoogle Scholar
  30. Yamashita Y, Kasugai I, Sato M, Tanuma N, Sato I, Nomura M, Yamashita K, Sonoda Y, Kumabe T, Tominaga T, Katakura R, Shima H (2010) CDC25A mRNA levels significantly correlate with Ki-67 expression in human glioma samples. J Neurooncol 100(1):43–49. doi: 10.1007/s11060-010-0147-3 CrossRefPubMedGoogle Scholar
  31. Yang S, Wang L, Kong Q (2014) Depression of focal adhesion kinase induces apoptosis in rat osteosarcoma OSR-6 cells in a caspase-dependent pathway. Cell Biochem Biophys 70(2):765–770. doi: 10.1007/s12013-014-9979-3 CrossRefPubMedGoogle Scholar
  32. Zhuang W, Qin Z, Liang Z (2009) The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim Biophys Sin 41(5):341–351CrossRefPubMedGoogle Scholar
  33. Zolota V, Sirinian C, Melachrinou M, Symeonidis A, Bonikos DS (2007) Expression of the regulatory cell cycle proteins p21, p27, p14, p16, p53, mdm2, and cyclin E in bone marrow biopsies with acute myeloid leukemia. Correlation with patients’ survival. Pathol Res Pract 203(4):199–207. doi: 10.1016/j.prp.2007.01.010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jie Sun
    • 1
  • Li Zhang
    • 2
  • Hongyu Zhao
    • 1
  • Xiaojun Qiu
    • 1
  • Wenjuan Chen
    • 1
  • Donglin Wang
    • 2
  • Na Ban
    • 2
  • Shaochen Fan
    • 2
  • Chaoyan Shen
    • 1
  • Xiaojie Xia
    • 1
  • Bin Ji
    • 1
  • Yuchan Wang
    • 2
  1. 1.Department of Radiotherapy and OncologyThe Affiliated Hospital of Nantong UniversityNantongPeople’s Republic of China
  2. 2.Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetMedical College of Nantong UniversityNantongPeople’s Republic of China

Personalised recommendations