Advertisement

Cellular and Molecular Neurobiology

, Volume 35, Issue 5, pp 669–677 | Cite as

Serine/Threonine Protein Phosphatase-5 Accelerates Cell Growth and Migration in Human Glioma

  • Xinglong Zhi
  • Hongqi Zhang
  • Chuan He
  • Yukui Wei
  • Lisong Bian
  • Guilin Li
Original Research

Abstract

Glioma is the most common type of primary central nervous system tumor. Ser/Thr protein phosphatase 5 (PP5) has been shown to regulate multiple signaling cascades that suppress growth and facilitate apoptosis in several human cancer cells. However, the role of PP5 in human gliomas remains unclear. Herein, the relationship between PP5 expression and glioma cell growth was investigated, and the therapeutic value of PP5 in glioma was further evaluated. We employed a short hairpin RNA targeting PPP5C gene to knock down PP5 expression in human glioma cell lines U251 and U373. Depletion of PPP5C via RNAi remarkably inhibited glioma cell proliferation and colony formation, and arrested cell cycle in the G0/G1 phase. Moreover, knockdown of PP5 markedly suppressed glioma cell migration, as determined by Transwell assay. Our findings suggest that PPP5C could be essential for glioma cell growth and serve as a promising therapeutic target in human gliomas.

Keywords

Glioma PPP5C Proliferation Migration 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10571_2015_162_MOESM1_ESM.tif (772 kb)
Fig. S1 Off-target exclusion assay of PPP5C using Lv-shPPP5C-S2 in U251 cells. a qPCR analysis of PPP5C knockdown efficiency by Lv-shPPP5C-S2 in U251 cells. b Western blot analysis of PPP5C knockdown efficiency by Lv-shPPP5C-S2 in U251 cells. c Growth curve of U251 cells after Lv-shPPP5C-S2 infection by MTT assay. d Representative images of colonies formed in Lv-shPPP5C-S2 infected U251 cells (scale bar: 250 µm). e Statistical analysis of colonies numbers in Lv-shPPP5C-S2 infected U251 cells. **: p < 0.01, ***: p < 0.001. Supplementary material 1 (TIFF 772 kb)

References

  1. Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 14(1):6–16PubMedGoogle Scholar
  2. Chen MS, Silverstein AM, Pratt WB, Chinkers M (1996) The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J Biol Chem 271(50):32315–32320PubMedCrossRefGoogle Scholar
  3. Cohen P (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem 268(19):5001–5010PubMedCrossRefGoogle Scholar
  4. Davies TH, Ning YM, Sanchez ER (2005) Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 44(6):2030–2038. doi: 10.1021/bi048503v PubMedCrossRefGoogle Scholar
  5. Ferguson HA, Marietta PM, Van Den Berg CL (2003) UV-induced apoptosis is mediated independent of caspase-9 in MCF-7 cells: a model for cytochrome c resistance. J Biol Chem 278(46):45793–45800. doi: 10.1074/jbc.M307979200 PubMedCrossRefGoogle Scholar
  6. Fukuda H, Tsuchiya N, Hara-Fujita K, Takagi S, Nagao M, Nakagama H (2007) Induction of abnormal nuclear shapes in two distinct modes by overexpression of serine/threonine protein phosphatase 5 in Hela cells. J Cell Biochem 101(2):321–330. doi: 10.1002/jcb.21178 PubMedCrossRefGoogle Scholar
  7. Ghobrial IM, McCormick DJ, Kaufmann SH, Leontovich AA, Loegering DA, Dai NT, Krajnik KL, Stenson MJ, Melhem MF, Novak AJ, Ansell SM, Witzig TE (2005) Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood 105(9):3722–3730. doi: 10.1182/blood-2004-10-3999 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Golden T, Aragon IV, Zhou G, Cooper SR, Dean NM, Honkanen RE (2004) Constitutive over expression of serine/threonine protein phosphatase 5 (PP5) augments estrogen-dependent tumor growth in mice. Cancer Lett 215(1):95–100. doi: 10.1016/j.canlet.2004.03.027 PubMedCrossRefGoogle Scholar
  9. Golden T, Aragon IV, Rutland B, Tucker JA, Shevde LA, Samant RS, Zhou G, Amable L, Skarra D, Honkanen RE (2008a) Elevated levels of Ser/Thr protein phosphatase 5 (PP5) in human breast cancer. Biochim Biophys Acta 1782(4):259–270. doi: 10.1016/j.bbadis.2008.01.004 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Golden T, Swingle M, Honkanen RE (2008b) The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metastasis Rev 27(2):169–178. doi: 10.1007/s10555-008-9125-z PubMedCentralPubMedCrossRefGoogle Scholar
  11. Guo W, Zhang Y, Chen T, Wang Y, Xue J, Zhang Y, Xiao W, Mo X, Lu Y (2011) Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol 137(1):65–72. doi: 10.1007/s00432-010-0860-5 PubMedCrossRefGoogle Scholar
  12. Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H, Houghton PJ (2003) Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 11(6):1491–1501PubMedCrossRefGoogle Scholar
  13. Huang S, Shu L, Easton J, Harwood FC, Germain GS, Ichijo H, Houghton PJ (2004) Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity. J Biol Chem 279(35):36490–36496. doi: 10.1074/jbc.M401208200 PubMedCrossRefGoogle Scholar
  14. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23(2):222–226. doi: 10.1038/nbt1051 PubMedCrossRefGoogle Scholar
  15. Kleihues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathol 3(3):255–268PubMedCrossRefGoogle Scholar
  16. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61(3):215–225 discussion 226–219PubMedGoogle Scholar
  17. Kutuzov MA, Andreeva AV, Voyno-Yasenetskaya TA (2005) Regulation of apoptosis signal-regulating kinase 1 (ASK1) by polyamine levels via protein phosphatase 5. J Biol Chem 280(27):25388–25395. doi: 10.1074/jbc.M413202200 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi: 10.1007/s00401-007-0243-4 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H (2002) Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid Redox Signal 4(3):415–425. doi: 10.1089/15230860260196218 PubMedCrossRefGoogle Scholar
  20. Mkaddem SB, Werts C, Goujon JM, Bens M, Pedruzzi E, Ogier-Denis E, Vandewalle A (2009) Heat shock protein gp96 interacts with protein phosphatase 5 and controls toll-like receptor 2 (TLR2)-mediated activation of extracellular signal-regulated kinase (ERK) 1/2 in post-hypoxic kidney cells. J Biol Chem 284(18):12541–12549. doi: 10.1074/jbc.M808376200 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Morita K, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H, Ichijo H (2001) Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO J 20(21):6028–6036. doi: 10.1093/emboj/20.21.6028 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Mumby MC, Walter G (1993) Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 73(4):673–699PubMedGoogle Scholar
  23. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 15(Suppl 2):ii1–ii56. doi: 10.1093/neuonc/not151 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Shirato H, Shima H, Nakagama H, Fukuda H, Watanabe Y, Ogawa K, Matsuda Y, Kikuchi K (2000) Expression in hepatomas and chromosomal localization of rat protein phosphatase 5 gene. Int J Oncol 17(5):909–912PubMedGoogle Scholar
  25. Silverstein AM, Galigniana MD, Chen MS, Owens-Grillo JK, Chinkers M, Pratt WB (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem 272(26):16224–16230PubMedCrossRefGoogle Scholar
  26. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi: 10.1056/NEJMoa043330 PubMedCrossRefGoogle Scholar
  27. Urban G, Golden T, Aragon IV, Cowsert L, Cooper SR, Dean NM, Honkanen RE (2003) Identification of a functional link for the p53 tumor suppressor protein in dexamethasone-induced growth suppression. J Biol Chem 278(11):9747–9753. doi: 10.1074/jbc.M210993200 PubMedCrossRefGoogle Scholar
  28. Vaughan CK, Mollapour M, Smith JR, Truman A, Hu B, Good VM, Panaretou B, Neckers L, Clarke PA, Workman P, Piper PW, Prodromou C, Pearl LH (2008) Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol Cell 31(6):886–895. doi: 10.1016/j.molcel.2008.07.021 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Wechsler T, Chen BP, Harper R, Morotomi-Yano K, Huang BC, Meek K, Cleaver JE, Chen DJ, Wabl M (2004) DNA-PKcs function regulated specifically by protein phosphatase 5. Proc Natl Acad Sci USA 101(5):1247–1252. doi: 10.1073/pnas.0307765100 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Zhang ZY (2002) Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 42:209–234. doi: 10.1146/annurev.pharmtox.42.083001.144616 PubMedCrossRefGoogle Scholar
  31. Zhang J, Bao S, Furumai R, Kucera KS, Ali A, Dean NM, Wang XF (2005) Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Mol Cell Biol 25(22):9910–9919. doi: 10.1128/MCB.25.22.9910-9919.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Zhou G, Golden T, Aragon IV, Honkanen RE (2004) Ser/Thr protein phosphatase 5 inactivates hypoxia-induced activation of an apoptosis signal-regulating kinase 1/MKK-4/JNK signaling cascade. J Biol Chem 279(45):46595–46605. doi: 10.1074/jbc.M408320200 PubMedCrossRefGoogle Scholar
  33. Zuo Z, Dean NM, Honkanen RE (1998) Serine/threonine protein phosphatase type 5 acts upstream of p53 to regulate the induction of p21(WAF1/Cip1) and mediate growth arrest. J Biol Chem 273(20):12250–12258PubMedCrossRefGoogle Scholar
  34. Zuo Z, Urban G, Scammell JG, Dean NM, McLean TK, Aragon I, Honkanen RE (1999) Ser/Thr protein phosphatase type 5 (PP5) is a negative regulator of glucocorticoid receptor-mediated growth arrest. Biochemistry 38(28):8849–8857. doi: 10.1021/bi990842e PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xinglong Zhi
    • 1
  • Hongqi Zhang
    • 1
  • Chuan He
    • 1
  • Yukui Wei
    • 1
  • Lisong Bian
    • 1
  • Guilin Li
    • 1
  1. 1.Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina

Personalised recommendations