Cellular and Molecular Neurobiology

, Volume 35, Issue 1, pp 23–31 | Cite as

Possible Contribution of Proteins of Bcl-2 Family in Neuronal Death Following Transient Global Brain Ischemia

  • Ivana Pilchova
  • Katarina Klacanova
  • Maria Chomova
  • Zuzana Tatarkova
  • Dusan Dobrota
  • Peter Racay
Original Research


Proteins of Bcl-2 family are crucial regulators of intrinsic (mitochondrial) pathway of apoptosis that is implicated among the mechanisms of ischemic neuronal death. Initiation of mitochondrial apoptosis depends on changes of equilibrium between anti-apoptotic and pro-apoptotic proteins of Bcl-2 family as well as on translocation of pro-apoptotic proteins of Bcl-2 family to mitochondria. The aim of this work was to study the effect of transient global brain ischemia on expression and intracellular distribution of proteins of Bcl-2 family in relation to the ischemia-induced changes of ERK and Akt kinase pathways as well as disturbances in ubiquitin proteasome system. Using four vessel occlusion model of transient global brain ischemia, we have shown that both ischemia in duration of 15 min and the same ischemia followed by 1, 3, 24, and 72 h of reperfusion did not affect the levels of either pro-apoptotic (Bad, PUMA, Bim, Bax, Noxa) or anti-apoptotic (Bcl-2, Bcl-xl, Mcl-1) proteins of Bcl-2 family in total cell extracts from rat hippocampus. However, significantly elevated level of Bad protein in the mitochondria isolated from rat hippocampus was observed already 1 h after ischemia and remained elevated 3 and 24 h after ischemia. We did not observe significant changes of the levels of Puma, Bax, Bcl-2, and Bcl-xl in the mitochondria after ischemia and ischemia followed by reperfusion. Our results might indicate possible involvement of Bad translocation to mitochondria in the mechanisms of neuronal death following transient global brain ischemia.


Global brain ischemia Bcl-2 protein family Mitochondrial apoptosis Ubiquitin–proteasome system Akt kinase Extracellular signal-regulated kinase 



Endoplasmic reticulum


Extracellular signal-regulated kinase


Transient global brain ischemia


Ubiquitin-proteasome system

Cox I

Cytochrome c oxidase subunit I


Sodium dodecyl sulfate–polyacrylamide gel electrophoresis



This work was supported by the Agency for Support of Science and Development of Slovak Republic (Grant APVV-0245-11 to P.R.).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abe T, Takagi N, Nakano M, Furuya M, Takeo S (2004) Altered Bad localization and interaction between Bad and Bcl-xL in the hippocampus after transient global ischemia. Brain Res 1009:159–168PubMedCrossRefGoogle Scholar
  2. Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–146PubMedCrossRefGoogle Scholar
  3. Asai A, Tanahashi N, Qiu JH, Saito N, Chi S, Kawahara N, Tanaka K, Kirino T (2002) Selective proteasome dysfunction in the hippocampal CA1 region after transient forebrain ischemia. J Cereb Blood Flow Metab 22:705–710PubMedCrossRefGoogle Scholar
  4. Balmanno K, Cook SJ (2009) Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 16:368–377PubMedCrossRefGoogle Scholar
  5. Bonneau B, Prudent J, Popgeorgiev N, Gillet G (2013) Non-apoptotic roles of Bcl-2 family: the calcium connection. Biochim Biophys Acta 1833:1755–1765PubMedCrossRefGoogle Scholar
  6. Cao G, Luo Y, Nagayama T, Pei W, Stetler RA, Graham SH, Chen J (2002) Cloning and characterization of rat caspase-9: implications for a role in mediating caspase-3 activation and hippocampal cell death after transient cerebral ischemia. J Cereb Blood Flow Metab 22:534–546PubMedCrossRefGoogle Scholar
  7. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18:4914–4928PubMedGoogle Scholar
  8. Chomova M, Tatarkova Z, Dobrota D, Racay P (2012) Ischemia-induced inhibition of mitochondrial complex I in rat brain: effect of permeabilization method and electron acceptor. Neurochem Res 37:965–976PubMedCrossRefGoogle Scholar
  9. Craxton A, Butterworth M, Harper N, Fairall L, Schwabe J, Ciechanover A, Cohen GM (2012) NOXA, a sensor of proteasome integrity, is degraded by 26S proteasomes by an ubiquitin-independent pathway that is blocked by MCL-1. Cell Death Differ 19:1424–1434PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dłuzniewska J, Beresewicz M, Wojewódzka U, Gajkowska B, Zabłocka B (2005) Transient cerebral ischemia induces delayed proapoptotic Bad translocation to mitochondria in CA1 sector of hippocampus. Brain Res Mol Brain Res 133:274–280PubMedCrossRefGoogle Scholar
  11. Duronio V (2008) The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J 415:333–344PubMedCrossRefGoogle Scholar
  12. Endo H, Kamada H, Nito C, Nishi T, Chan PH (2006a) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26:7974–7983PubMedCrossRefGoogle Scholar
  13. Endo H, Nito C, Kamada H, Nishi T, Chan PH (2006b) Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26:1479–1489PubMedCrossRefGoogle Scholar
  14. Fennell DA, Chacko A, Mutti L (2008) BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene 27:1189–1197PubMedCrossRefGoogle Scholar
  15. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G (2012) Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep 13:322–330PubMedCentralPubMedCrossRefGoogle Scholar
  16. García L, Burda J, Hrehorovská M, Burda R, Martín ME, Salinas M (2004) Ischaemic preconditioning in the rat brain: effect on the activity of several initiation factors, Akt and extracellular signal-regulated protein kinase phosphorylation, and GRP78 and GADD34 expression. J Neurochem 88:136–147PubMedCrossRefGoogle Scholar
  17. Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, Marrack P, Bratton DL, Henson PM (2004) Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem 279:21085–21095PubMedCrossRefGoogle Scholar
  18. Ge P, Luo Y, Liu CL, Hu B (2007) Protein aggregation and proteasome dysfunction after brain ischemia. Stroke 38:3230–3236PubMedCentralPubMedCrossRefGoogle Scholar
  19. Green DR (2005) Apoptotic pathways: ten minutes to dead. Cell 121:671–674PubMedCrossRefGoogle Scholar
  20. Hardwick JM, Chen YB, Jonas EA (2012) Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol 22:318–328PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hetz C, Vitte PA, Bombrun A, Rostovtseva TK, Montessuit S, Hiver A, Schwarz MK, Church DJ, Korsmeyer SJ, Martinou JC, Antonsson B (2005) Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem 280:42960–42970PubMedCrossRefGoogle Scholar
  22. Inta I, Paxian S, Maegele I, Zhang W, Pizzi M, Spano P, Sarnico I, Muhammad S, Herrmann O, Inta D, Baumann B, Liou HC, Schmid RM, Schwaninger M (2006) Bim and Noxa are candidates to mediate the deleterious effect of the NF-kappa B subunit RelA in cerebral ischemia. J Neurosci 26:12896–12903PubMedCrossRefGoogle Scholar
  23. Kamikubo T, Hayashi T (1996) Changes in proteasome activity following transient ischemia. Neurochem Int 28:209–212PubMedCrossRefGoogle Scholar
  24. Kato H, Chen T, Liu XH, Nakata N, Kogure K (1993) Immunohistochemical localization of ubiquitin in gerbil hippocampus with induced tolerance to ischemia. Brain Res 619:339–343PubMedCrossRefGoogle Scholar
  25. Kirino T (2000) Delayed neuronal death. Neuropathology 20:S95–S97PubMedCrossRefGoogle Scholar
  26. Krajewski S, Krajewska M, Shabaik A, Wang HG, Irie S, Fong L, Reed JC (1994) Immunohistochemical analysis of in vivo patterns of Bcl-X expression. Cancer Res 54:5501–5507PubMedGoogle Scholar
  27. Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC (1995a) Upregulation of bax protein levels in neurons following cerebral ischemia. J Neurosci 15:6364–6376PubMedGoogle Scholar
  28. Krajewski S, Bodrug S, Krajewska M, Shabaik A, Gascoyne R, Berean K, Reed JC (1995b) Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol 146:1309–1319PubMedCentralPubMedGoogle Scholar
  29. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Y, Deveraux OL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA 96:5752–5757PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lein ES, Zhao X, Gage FH (2004) Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24:3879–3889PubMedCrossRefGoogle Scholar
  31. Li H, Colbourne F, Sun P, Zhao Z, Buchan AM (2000) Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. Stroke 31:176–182PubMedCrossRefGoogle Scholar
  32. Lindsay J, Esposti MD, Gilmore AP (2011) Bcl-2 proteins and mitochondria–specificity in membrane targeting for death. Biochim Biophys Acta 1813:532–539PubMedCrossRefGoogle Scholar
  33. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  34. Miyawaki T, Mashiko T, Ofengeim D, Flannery RJ, Noh KM, Fujisawa S, Bonanni L, Bennett MV, Zukin RS, Jonas EA (2008) Ischemic preconditioning blocks BAD translocation, Bcl-xL cleavage, and large channel activity in mitochondria of postischemic hippocampal neurons. Proc Natl Acad Sci USA 105:4892–4897PubMedCentralPubMedCrossRefGoogle Scholar
  35. Morimoto T, Ide T, Ihara Y, Tamura A, Kirino T (1996) Transient ischemia depletes free ubiquitin in the gerbil hippocampal CA1 neurons. Am J Pathol 148:249–257PubMedCentralPubMedGoogle Scholar
  36. Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:1506–1510PubMedCrossRefGoogle Scholar
  37. Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37:7–38PubMedCrossRefGoogle Scholar
  38. Niizuma K, Endo H, Nito C, Myer DJ, Chan PH (2009) Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia. Stroke 40:618–625PubMedCentralPubMedCrossRefGoogle Scholar
  39. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99PubMedCentralPubMedCrossRefGoogle Scholar
  40. Perez-Pinzon MA, Xu GP, Born J, Lorenyo J, Busto R, Rosenthal M, Sick TJ (1999) Cytochrome C is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J Cereb Blood Flow Metab 19:39–43PubMedCrossRefGoogle Scholar
  41. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272PubMedCrossRefGoogle Scholar
  42. Racay P (2012) Ischaemia-induced protein ubiquitinylation is differentially accompanied with heat-shock protein 70 expression after naïve and preconditioned ischaemia. Cell Mol Neurobiol 32:107–119PubMedCrossRefGoogle Scholar
  43. Racay P, Tatarkova Z, Drgova A, Kaplan P, Dobrota D (2007) Effect of ischemic preconditioning on mitochondrial dysfunction and mitochondrial p53 translocation after transient global cerebral ischemia in rats. Neurochem Res 32:1823–1832PubMedCrossRefGoogle Scholar
  44. Racay P, Chomova M, Tatarkova Z, Kaplan P, Hatok J, Dobrota D (2009) Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditioning. Cell Mol Neurobiol 29:901–908PubMedCrossRefGoogle Scholar
  45. Rodriguez D, Rojas-Rivera D, Hetz C (2011) Integrating stress signals at the endoplasmic reticulum: the BCL-2 protein family rheostat. Biochim Biophys Acta 1813:564–574PubMedCrossRefGoogle Scholar
  46. Sanderson TH, Kumar R, Murariu-Dobrin AC, Page AB, Krause GS, Sullivan JM (2009) Insulin activates the PI3K-Akt survival pathway in vulnerable neurons following global brain ischemia. Neurol Res 31:947–958PubMedCrossRefGoogle Scholar
  47. Sawe N, Steinberg G, Zhao H (2008) Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 86:1659–1669PubMedCrossRefGoogle Scholar
  48. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:1–6Google Scholar
  49. Sun YF, Yu LY, Saarma M, Timmusk T, Arumae U (2001) Neuron-specific Bcl-2 homology 3 domain-only splice variant of Bak is anti-apoptotic in neurons, but pro-apoptotic in non-neuronal cells. J Biol Chem 276:16240–16270PubMedCrossRefGoogle Scholar
  50. Szegezdi E, Macdonald DC, Ní Chonghaile T, Gupta S, Samali A (2009) Bcl-2 family on guard at the ER. Am J Physiol Cell Physiol 296:C941–C953PubMedCrossRefGoogle Scholar
  51. Tanaka H, Yokota H, Jover T, Cappuccio I, Calderone A, Simionescu M, Bennett MV, Zukin RS (2004) Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J Neurosci 24:2750–2759PubMedCrossRefGoogle Scholar
  52. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241PubMedCrossRefGoogle Scholar
  53. Tsuchiya T, Bonner HP, Engel T, Woods I, Matsushima S, Ward MW, Taki W, Henshall DC, Concannon CG, Prehn JH (2011) Bcl-2 homology domain 3-only proteins Puma and Bim mediate the vulnerability of CA1 hippocampal neurons to proteasome inhibition in vivo. Eur J Neurosci 33:401–408PubMedCrossRefGoogle Scholar
  54. Tsuruta F, Masuyama N, Gotoh Y (2002) The phosphatidylinositol 3-kinase (PI3 K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 277:14040–14047PubMedCrossRefGoogle Scholar
  55. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291PubMedCrossRefGoogle Scholar
  56. Yin XH, Zhang QG, Miao B, Zhang GY (2005) Neuroprotective effects of preconditioning ischaemia on ischaemic brain injury through inhibition of mixed-lineage kinase 3 via NMDA receptor-mediated Akt1 activation. J Neurochem 93:1021–1029PubMedCrossRefGoogle Scholar
  57. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59PubMedCrossRefGoogle Scholar
  58. Young KW, Piñón LG, Dhiraj D, Twiddy D, Macfarlane M, Hickman J, Nicotera P (2010) Mitochondrial fragmentation and neuronal cell death in response to the Bcl-2/Bcl-x(L)/Bcl-w antagonist ABT-737. Neuropharmacology 58:1258–1267PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ivana Pilchova
    • 1
  • Katarina Klacanova
    • 1
  • Maria Chomova
    • 1
    • 3
  • Zuzana Tatarkova
    • 1
  • Dusan Dobrota
    • 1
  • Peter Racay
    • 1
    • 2
  1. 1.Department of Medical Biochemistry, Jessenius Faculty of Medicine in MartinComenius University in BratislavaMartinSlovak Republic
  2. 2.Department of Medical Biochemistry, Jessenius Faculty of MedicineComenius University in BratislavaMartinSlovak Republic
  3. 3.Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical BiochemistryComenius UniversityBratislavaSlovak Republic

Personalised recommendations