Advertisement

Cellular and Molecular Neurobiology

, Volume 34, Issue 8, pp 1087–1096 | Cite as

The Retrovirus/Superantigen Hypothesis of Multiple Sclerosis

  • Alexander Emmer
  • Martin S. Staege
  • Malte E. Kornhuber
Review Paper

Abstract

The pathogenesis of multiple sclerosis (MS) is as yet unknown. Commonly, MS is assumed to be due to an autoimmune inflammation of the central nervous system (CNS). Neurodegeneration is regarded to be a secondary reaction. This concept is increasingly being challenged. Human endogenous retroviruses (HERV) that could be locally activated in the CNS have been proposed as an alternative concept. HERV-encoded envelope proteins (env) can act as strong immune stimulators (superantigens). Thus, slow disease progression following neurodegeneration might be induced by re-activation of HERV expression directly, while relapses in parallel to inflammation might be secondary to the expression of HERV-encoded superantigens. It has been shown previously that T-cell superantigens are capable to induce a cellular inflammatory reaction in the CNS of experimental animals similar to that in MS. Furthermore, B-cell superantigens have been shown to activate blood leucocytes in vitro to produce immunoglobulin in an oligoclonal manner. It remains to be established, whether the outlined hypothesis accords with all known features of MS. Furthermore, anti-HERV agents may be taken into consideration to enrich and improve MS therapy.

Keywords

Human endogenous retrovirus (HERV) Envelope protein Superantigen Multiple sclerosis Pathogenesis Therapy 

Notes

Acknowledgments

A. E. and M. S. S. are supported by the Wilhelm-Roux program (FKZ 21/22, FKZ 25/28, and FKZ 25/22) of the University of Halle-Wittenberg. Furthermore, we gratefully acknowledge generous support by Novartis Pharma GmbH.

References

  1. Anlar O, Kisli M, Tombul T, Ozbek H (2003) Visual evoked potentials in multiple sclerosis before and after two years of interferon therapy. Int J Neurosci 113:483–489PubMedGoogle Scholar
  2. Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, Wallace JL, Deacon RM, Warren K, Power C (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7:1088–1095PubMedGoogle Scholar
  3. Assinger A, Yaiw KC, Göttesdorfer I, Leib-Mösch C, Söderberg-Nauclér C (2013) Human cytomegalovirus (HCMV) induces human endogenous retrovirus (HERV) transcription. Retrovirology 10:132. doi: 10.1186/1742-4690-10-132 PubMedPubMedCentralGoogle Scholar
  4. Balada E, Ordi-Ros J, Vilardell-Tarrés M (2009) Molecular mechanisms mediated by human endogenous retroviruses (HERVs) in autoimmunity. Rev Med Virol 19:273–286PubMedGoogle Scholar
  5. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468PubMedGoogle Scholar
  6. Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 78:318–323PubMedGoogle Scholar
  7. Bell JE (1998) The neuropathology of adult HIV infection. Rev Neurol (Paris) 154:816–829Google Scholar
  8. Brønnum-Hansen H, Stenager E, Hansen T, Koch-Henriksen H (2006) Survival and mortality rates among Danes with MS. Int MS J 13:66–71PubMedGoogle Scholar
  9. Chastain EM, Miller SD (2012) Molecular mimicry as an inducing trigger for CNS autoimmune demyelinating disease. Immunol Rev 245:227–238PubMedPubMedCentralGoogle Scholar
  10. Cheriyan J, Kim S, Wolansky LJ, Cook SD, Cadavid D (2012) Impact of inflammation on brain volume in multiple sclerosis. Arch Neurol 69:82–88PubMedGoogle Scholar
  11. Christensen T (2010) HERVs in neuropathogenesis. J Neuroimmune Pharmacol 5:326–335PubMedGoogle Scholar
  12. Confavreux C, Vukusic S (2006a) Natural history of multiple sclerosis: a unifying concept. Brain 129:606–616PubMedGoogle Scholar
  13. Confavreux C, Vukusic S (2006b) Accumulation of irreversible disability in multiple sclerosis: from epidemiology to treatment. Clin Neurol Neurosurg 108:327–332PubMedGoogle Scholar
  14. Confavreux C, Vukusic S, Adelaine P (2003) Early clinical predictors and progression of irreversible disability in multiple sclerosis. Brain 126:770–782PubMedGoogle Scholar
  15. Correale J, Fiol M, Gilmore W (2006) The risk of relapses in multiple sclerosis during systemic infections. Neurology 67:652–659PubMedGoogle Scholar
  16. Coyle PK, Hartung HP (2002) Use of interferon beta in multiple sclerosis: rationale for early treatment and evidence for dose- and frequency-dependent effects on clinical response. Mult Scler 8:2–9PubMedGoogle Scholar
  17. D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K (2012) Brain dendritic cells: biology and pathology. Acta Neuropathol 124:599–614PubMedPubMedCentralGoogle Scholar
  18. De Stefano N, Narayanan S, Francis SJ, Smith S, Mortilla M, Tartaglia MC, Bartolozzi ML, Guidi L, Federico A, Arnold DL (2002) Diffuse axonal and tissue injury in patients with multiple sclerosis with low lesion load and no disability. Arch Neurol 59:1565–1571PubMedGoogle Scholar
  19. Dick T, Staege MS, Reichmann G, Reske-Kunz AB (1993) Manifestation of the MHC-unrestricted killing potential of a cytotoxic T cell clone requires activation in response to MHC-restricted self-presentation of antigen. J Immunol 150:2575–2583PubMedGoogle Scholar
  20. Dolei A (2006) Endogenous retroviruses and human disease. Expert Rev Clin Immunol 2:149–167PubMedGoogle Scholar
  21. Dreyfus DH (2011) Autoimmune disease: a role for new anti-viral therapies? Autoimmun Rev 11:88–97PubMedGoogle Scholar
  22. Dupressoir A, Lavialle C, Heidmann T (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–671PubMedGoogle Scholar
  23. Emmer A, Gerlach K, Staege MS, Kornhuber ME (2008) Cerebral gene expression of superantigen encephalitis in the lewis rat induced by staphylococcal enterotoxin a. Scand J Immunol 67:464–472PubMedGoogle Scholar
  24. Emmer A, Gerlach K, Staege MS, Kornhuber ME (2010) T-cell subsets of the encephalitis induced by the superantigen Staphylococcal Enterotoxin A (SEA) in the Lewis rat: an immunohistochemical investigation. Cell Immunol 264:93–96PubMedGoogle Scholar
  25. Emmer A, Gerlach K, Staege MS, Kornhuber ME (2011) Superantigen-mediated encephalitis. In: Hayasaka D (ed) Pathogenesis of encephalitis. InTech, Rijeka, pp 213–234Google Scholar
  26. Everett RD (1984) Trans-activation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity. EMBO J 3:3135–3141PubMedPubMedCentralGoogle Scholar
  27. Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814PubMedGoogle Scholar
  28. Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, Ghezzi A, Martinelli V, Grossman RI, Scotti G, Comi G, Falini A (2003) Evidence for widespread axonal damage at the earliest clinic stage of multiple sclerosis. Brain 126:433–437PubMedGoogle Scholar
  29. Firouzi R, Rolland A, Michel M, Jouvin-Marche E, Hauw JJ, Malcus-Vocanson C, Lazarini F, Gebuhrer L, Seigneurin JM, Touraine JL, Sanhadji K, Marche PN, Perron H (2003) Multiple sclerosis-associated retrovirus particles cause T-lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model. J Neurovirol 9:79–93PubMedGoogle Scholar
  30. Fleming SD, Iandolo JJ, Chapes SK (1991) Murine macrophage activation by staphylococcal exotoxins. Infect Immun 59:4049–4055PubMedPubMedCentralGoogle Scholar
  31. Francis DA, Batchelor JR, McDonald WI, Hing SN, Dodi IA, Fielder AH, Hern JE, Downie AW (1987) Multiple sclerosis in north-east Scotland: an association with HLA DQw1. Brain 110:181–196PubMedGoogle Scholar
  32. Frank O, Jones-Brando L, Leib-Mosch C, Yolken R, Seifarth W (2006) Altered transcriptional activity of human endogenous retroviruses in neuroepithelial cells after infection with Toxoplasma gondii. J Infect Dis 194:1447–1449PubMedGoogle Scholar
  33. Friese MA, Fugger L (2009) Pathogenic CD8(+) T cells in multiple sclerosis. Ann Neurol 66:132–141PubMedGoogle Scholar
  34. Ganem MB, De Marzi MC, Fernández-Lynch MJ, Jancic C, Vermeulen M, Geffner J, Mariuzza RA, Fernández MM, Malchiodi EL (2013) Uptake and intracellular trafficking of superantigens in dendritic cells. PLoS One 8:e66244PubMedPubMedCentralGoogle Scholar
  35. Gelman IH, Silverstein S (1985) Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene. Proc Natl Acad Sci USA 82:5265–5269PubMedPubMedCentralGoogle Scholar
  36. Gonzalez-Hernandez MJ, Swanson MD, Contreras-Galindo R, Cookinham S, King SR, Noel RJ Jr, Kaplan MH, Markovitz DM (2012) Expression of human endogenous retrovirus type K (HML-2) is activated by the Tat protein of HIV-1. J Virol 86:7790–7805PubMedPubMedCentralGoogle Scholar
  37. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407PubMedPubMedCentralGoogle Scholar
  38. Hartung HP, Kieseier BC, Hemmer B (2005) Purely systemically active anti-inflammatory treatments are adequate to control multiple sclerosis. J Neurol 252:30–37Google Scholar
  39. Hassan-Zahraee M, Ladiwala U, Lavoie PM, McCrea E, Sekaly RP, Owens T, Antel JP (2000) Superantigen presenting capacity of human astrocytes. J Neuroimmunol 102:131–136PubMedGoogle Scholar
  40. Hauser KF, Hahn YK, Adjan VV, Zou S, Buch SK, Nath A, Bruce-Keller AJ, Knapp PE (2009) HIV-1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia 57:194–206PubMedPubMedCentralGoogle Scholar
  41. Hemmer B, Kieseier B, Cepok S, Hartung HP (2003) New immunopathologic insights into multiple sclerosis. Curr Neurol Neurosci Rep 3:246–255PubMedGoogle Scholar
  42. Hohenadl C, Germaier H, Walchner M, Hagenhofer M, Herrmann M, Stürzl M, Kind P, Hehlmann R, Erfle V, Leib-Mösch C (1999) Transcriptional activation of endogenous retroviral sequences in human epidermal keratinocytes by UVB irradiation. J Invest Dermatol 113:587–594PubMedGoogle Scholar
  43. Hohlfeld R (2012) Multiple Sklerose: Verlangsamt Interferon-beta die Erkrankungsprogression? - Langzeiteffekt von IFN-ß auf Behinderungsprogression ist noch nicht belegt. Dtsch Med Wochenschr 137:2088PubMedGoogle Scholar
  44. Hohlfeld R, Wekerle H (2004) Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci USA 101:14599–14606PubMedPubMedCentralGoogle Scholar
  45. Holmøy T (2007) Immunopathogenesis of multiple sclerosis: concepts and controversies. Acta Neurol Scand Suppl 187:39–45PubMedGoogle Scholar
  46. Hopkins PA, Fraser JD, Pridmore AC, Russell HH, Read RC, Sriskandan S (2005) Superantigen recognition by HLA class II on monocytes up-regulates toll-like receptor 4 and enhances proinflammatory responses to endotoxin. Blood 105:3655–3662PubMedGoogle Scholar
  47. Hopkins PA, Pridmore AC, Ellmerich S, Fraser JD, Russell HH, Read RC, Sriskandan S (2008) Increased surface toll-like receptor 2 expression in superantigen shock. Crit Care Med 36:1267–1276PubMedGoogle Scholar
  48. Hsiao FC, Lin M, Tai A, Chen G, Huber BT (2006) Cutting edge: Epstein-Barr virus transactivates the HERV-K18 superantigen by docking to the human complement receptor 2 (CD21) on primary B cells. J Immunol 177:2056–2060PubMedGoogle Scholar
  49. Hsiao FC, Tai AK, Deglon A, Sutkowski N, Longnecker R, Huber BT (2009) EBV LMP-2A employs a novel mechanism to transactivate the HERV-K18 superantigen through its ITAM. Virology 385:261–266PubMedGoogle Scholar
  50. Ikejima T, Dinarello CA, Gill DM, Wolff SM (1984) Induction of human interleukin-1 by a product of Staphylococcus aureus associated with toxic shock syndrome. J Clin Invest 73:1312–1320PubMedPubMedCentralGoogle Scholar
  51. Junker A, Ivanidze J, Malotka J, Eiglmeier I, Lassmann H, Wekerle H, Meinl E, Hohlfeld R, Dornmair K (2007) Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 130:2789–2799PubMedGoogle Scholar
  52. Kaiser R, Obert M, Kaufmann R, Czygan M (1997) IgG-antibodies to CNS proteins in patients with multiple sclerosis. Eur J Med Res 2:169–172PubMedGoogle Scholar
  53. Katoh I, Mírová A, Kurata S, Murakami Y, Horikawa K, Nakakuki N, Sakai T, Hashimoto K, Maruyama A, Yonaga T, Fukunishi N, Moriishi K, Hirai H (2011) Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia 13:1081–1092PubMedPubMedCentralGoogle Scholar
  54. Kewitz S, Staege MS (2013) Expression and regulation of the endogenous retrovirus 3 in Hodgkin’s lymphoma cells. Front Oncol 3:179PubMedPubMedCentralGoogle Scholar
  55. Kornhuber ME (2006) Nichtentzündliche Pathogenese von Herden bei Multipler Sklerose. Nervenarzt 77:989–990PubMedGoogle Scholar
  56. Kornhuber ME, Ganz C, Lang R, Brill T, Schmahl W (2002) Focal encephalitis in the Lewis rat induced by intracerebral enterotoxin superantigen and amplified by activated intravenous splenocytes. Neurosci Lett 324:93–96PubMedGoogle Scholar
  57. Kornhuber ME, Presek P, Zierz S (2005) Unterschiedliche Wirkung der Immuntherapie auf Schübe und schleichende Progression bei Multipler Sklerose: Deutung und Konsequenzen für die Therapie. Fortschr Neurol Psychiatr 73:143–149PubMedGoogle Scholar
  58. Kremer D, Schichel T, Förster M, Tzekova N, Bernard C, van der Valk P, van Horssen J, Hartung HP, Perron H, Küry P (2013) Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann Neurol 74:721–732PubMedGoogle Scholar
  59. Kwun HJ, Han HJ, Lee WJ, Kim HS, Jang KL (2002) Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res 86:93–100PubMedGoogle Scholar
  60. La Mantia L, Vacchi L, Di Pietrantonj C, Ebers G, Rovaris M, Fredrikson S, Filippini G (2012) Interferon beta for secondary progressive multiple sclerosis. Cochrane Database Syst Rev 1:CD005181PubMedGoogle Scholar
  61. Lassmann H (2013) Multiple sclerosis: lessons from molecular neuropathology. Exp Neurol. doi: 10.1016/j.expneurol.2013.12.003 PubMedGoogle Scholar
  62. Lee JR, Ahn K, Kim YJ, Jung YD, Kim HS (2012) Radiation-induced human endogenous retrovirus (HERV)-R env gene expression by epigenetic control. Radiat Res 178:379–384PubMedGoogle Scholar
  63. Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A (2010) Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol 67:824–830PubMedPubMedCentralGoogle Scholar
  64. Li S, Liu ZC, Yin SJ, Chen YT, Yu HL, Zeng J, Zhang Q, Zhu F (2013) Human endogenous retrovirus W family envelope gene activates the small conductance Ca2+-activated K+ channel in human neuroblastoma cells through CREB. Neuroscience 247:164–174PubMedGoogle Scholar
  65. Li F, Nellåker C, Sabunciyan S, Yolken RH, Jones-Brando L, Johansson AS, Owe-Larsson B, Karlsson H (2014) Transcriptional derepression of the ERVWE1 locus following influenza A virus infection. J Virol 88:4328–4337PubMedPubMedCentralGoogle Scholar
  66. Liu C, Chen Y, Li S, Yu H, Zeng J, Wang X, Zhu F (2013) Activation of elements in HERV-W family by caffeine and aspirin. Virus Genes 47:219–227PubMedGoogle Scholar
  67. Llorca J, Guerrero-Alonso P, Prieto-Salceda D (2005) Mortality trends of multiple sclerosis in Spain, 1951–1997: an age-period-cohort analysis. Neuroepidemiology 24:129–134PubMedGoogle Scholar
  68. Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMedGoogle Scholar
  69. MacDonald HR, Schneider R, Lees RK, Howe RC, Acha-Orbea H, Festenstein H, Zinkernagel RM, Hengartner H (1988) T-cell receptor V beta use predicts reactivity and tolerance to Mlsa-encoded antigens. Nature 332:40–45PubMedGoogle Scholar
  70. Madigand M, Oger JJ-F, Fauchert R, Sabouraud O, Genetet B (1982) HLA profiles in multiple sclerosis suggest two forms of disease and the existence of protective haplotypes. J Neurol Sci 53:519–529PubMedGoogle Scholar
  71. Mameli G, Astone V, Khalili K, Serra C, Sawaya BE, Dolei A (2007) Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines. Virology 362:120–130PubMedGoogle Scholar
  72. Masterman T, Ligers A, Olsson T, Andersson M, Olerup O, Hillert J (2000) HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann Neurol 48:211–219PubMedGoogle Scholar
  73. Mattson DH, Roos RP, Arnason BG (1980) Isoelectric focusing of IgG eluted from multiple sclerosis and subacute sclerosing panencephalitis brains. Nature 287:335–337PubMedGoogle Scholar
  74. Merabova N, Kaniowska D, Kaminski R, Deshmane SL, White MK, Amini S, Darbinyan A, Khalili K (2008) JC virus agnoprotein inhibits in vitro differentiation of oligodendrocytes and promotes apoptosis. J Virol 82:1558–1569PubMedPubMedCentralGoogle Scholar
  75. Nellåker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH, Karlsson H (2006) Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology 3:44PubMedPubMedCentralGoogle Scholar
  76. Nexø BA, Christensen T, Frederiksen J, Møller-Larsen A, Oturai AB, Villesen P, Hansen B, Nissen KK, Laska MJ, Petersen TS, Bonnesen S, Hedemand A, Wu T, Wang X, Zhang X, Brudek T, Maric R, Søndergaard HB, Sellebjerg F, Brusgaard K, Kjeldbjerg AL, Rasmussen HB, Nielsen AL, Nyegaard M, Petersen T, Børglum AD, Pedersen FS (2011) The etiology of multiple sclerosis: genetic evidence for the involvement of the human endogenous retrovirus HERV-Fc1. PLoS One 6:e16652PubMedPubMedCentralGoogle Scholar
  77. O’Hare P, Hayward GS (1985) Evidence for a direct role for both the 175,000- and 110,000-molecular-weight immediateearly proteins of herpes simplex virus in the transactivation of delayed-early promoters. J Virol 53:751–760PubMedPubMedCentralGoogle Scholar
  78. Olerup O, Hillert J, Fredrikson S, Olsson T, Kam-Hansen S, Möller E, Carlsson B, Wallin J (1989) Primarily chronic progressive and relapsing/remitting multiple sclerosis: two immunogenetically distinct disease entities. Proc Natl Acad Sci USA 86:7113–7117PubMedPubMedCentralGoogle Scholar
  79. Ono M, Kawakami M, Ushikubo H (1987) Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol 61:2059–2062PubMedPubMedCentralGoogle Scholar
  80. Owens GP, Bennett JL, Lassmann H, O’Connor KC, Ritchie AM, Shearer A, Lam C, Yu X, Birlea M, DuPree C, Williamson RA, Hafler DA, Burgoon MP, Gilden D (2009) Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Ann Neurol 65:639–649PubMedPubMedCentralGoogle Scholar
  81. Parry A, Corkill R, Blamire AM, Palace J, Narayanan S, Arnold D, Styles P, Matthews PM (2003) Beta-Interferon treatment does not always slow the progression of axonal injury in multiple sclerosis. J Neurol 250:171–178PubMedGoogle Scholar
  82. Parsonnet J, Gillis ZA, Pier GB (1986) Induction of interleukin-1 by strains of Staphylococcus aureus from patients with nonmenstrual toxic shock syndrome. J Infect Dis 154:55–63PubMedGoogle Scholar
  83. Pender MP, Greer JM (2007) Immunology of multiple sclerosis. Curr Allergy Asthma Rep 7:285–292PubMedGoogle Scholar
  84. Perron H, Lang A (2010) The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol 39:51–61PubMedGoogle Scholar
  85. Perron H, Geny C, Laurent A, Mouriquand C, Pellat J, Perret J, Seigneurin JM (1989) Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res Virol 140:551–561PubMedGoogle Scholar
  86. Perron H, Suh M, Lalande B, Gratacap B, Laurent A, Stoebner P, Seigneurin JM (1993) Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 74:65–72PubMedGoogle Scholar
  87. Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, Lalande B, Seigneurin JM, Mandrand B (1997) Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci USA 94:7583–7588PubMedPubMedCentralGoogle Scholar
  88. Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, Jolivet-Reynaud C, Marcel F, Souillet Y, Borel E, Gebuhrer L, Santoro L, Marcel S, Seigneurin JM, Marche PN, Lafon M (2001) Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 287:321–332PubMedGoogle Scholar
  89. Perron H, Dougier-Reynaud HL, Lomparski C, Popa I, Firouzi R, Bertrand JB, Marusic S, Portoukalian J, Jouvin-Marche E, Villiers CL, Touraine JL, Marche PN (2013) Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS One 8:e80128PubMedPubMedCentralGoogle Scholar
  90. Pette M, Fujita K, Kitze B, Whitaker JN, Albert E, Kappos L, Wekerle H (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40:1770–1776PubMedGoogle Scholar
  91. Pickard S, Shankar G, Burnham K (1994) Langerhans’ cell depletion by staphylococcal superantigens. Immunology 83:568–572PubMedPubMedCentralGoogle Scholar
  92. Prineas JW, Parratt JD (2012) Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol 72:18–31PubMedGoogle Scholar
  93. Ramagopalan SV, Knight JC, Ebers GC (2009) Multiple sclerosis and the major histocompatibility complex. Curr Opin Neurol 22:219–225PubMedGoogle Scholar
  94. Rott O, Wekerle H, Fleischer B (1992) Protection from experimental allergic encephalomyelitis by application of a bacterial superantigen. Int Immunol 4:347–353PubMedGoogle Scholar
  95. Rott O, Tontsch U, Fleischer B (1993) Dissociation of antigen-presenting capacity of astrocytes for peptide-antigens versus superantigens. J Immunol 150:87–95PubMedGoogle Scholar
  96. Ruebner M, Langbein M, Strissel PL, Henke C, Schmidt D, Goecke TW, Faschingbauer F, Schild RL, Beckmann MW, Strick R (2012) Regulation of the human endogenous retroviral Syncytin-1 and cell-cell fusion by the nuclear hormone receptors PPARγ/RXRα in placentogenesis. J Cell Biochem 113:2383–2396PubMedGoogle Scholar
  97. Ruprecht K, Obojes K, Wengel V, Gronen F, Kim KS, Perron H, Schneider-Schaulies J, Rieckmann P (2006) Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: implications for multiple sclerosis. J Neurovirol 12:65–71PubMedGoogle Scholar
  98. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, D’alfonso S, Blackburn H, Martinelli Boneschi F, Liddle J, Harbo HF, Perez ML, Spurkland A, Waller MJ, Mycko MP, Ricketts M, Comabella M, Hammond N, Kockum I, McCann OT, Ban M, Whittaker P, Kemppinen A, Weston P, Hawkins C, Widaa S, Zajicek J, Dronov S, Robertson N, Bumpstead SJ, Barcellos LF, Ravindrarajah R, Abraham R, Alfredsson L, Ardlie K, Aubin C, Baker A, Baker K, Baranzini SE, Bergamaschi L, Bergamaschi R, Bernstein A, Berthele A, Boggild M, Bradfield JP, Brassat D, Broadley SA, Buck D, Butzkueven H, Capra R, Carroll WM, Cavalla P, Celius EG, Cepok S, Chiavacci R, Clerget-Darpoux F, Clysters K, Comi G, Cossburn M, Cournu-Rebeix I, Cox MB, Cozen W, Cree BA, Cross AH, Cusi D, Daly MJ, Davis E, de Bakker PI, Debouverie M, D’hooghe MB, Dixon K, Dobosi R, Dubois B, Ellinghaus D, Elovaara I, Esposito F, Fontenille C, Foote S, Franke A, Galimberti D, Ghezzi A, Glessner J, Gomez R, Gout O, Graham C, Grant SF, Guerini FR, Hakonarson H, Hall P, Hamsten A, Hartung HP, Heard RN, Heath S, Hobart J, Hoshi M, Infante-Duarte C, Ingram G, Ingram W, Islam T, Jagodic M, Kabesch M, Kermode AG, Kilpatrick TJ, Kim C, Klopp N, Koivisto K, Larsson M, Lathrop M, Lechner-Scott JS, Leone MA, Leppä V, Liljedahl U, Bomfim IL, Lincoln RR, Link J, Liu J, Lorentzen AR, Lupoli S, Macciardi F, Mack T, Marriott M, Martinelli V, Mason D, McCauley JL, Mentch F, Mero IL, Mihalova T, Montalban X, Mottershead J, Myhr KM, Naldi P, Ollier W, Page A, Palotie A, Pelletier J, Piccio L, Pickersgill T, Piehl F, Pobywajlo S, Quach HL, Ramsay PP, Reunanen M, Reynolds R, Rioux JD, Rodegher M, Roesner S, Rubio JP, Rückert IM, Salvetti M, Salvi E, Santaniello A, Schaefer CA, Schreiber S, Schulze C, Scott RJ, Sellebjerg F, Selmaj KW, Sexton D, Shen L, Simms-Acuna B, Skidmore S, Sleiman PM, Smestad C, Sørensen PS, Søndergaard HB, Stankovich J, Strange RC, Sulonen AM, Sundqvist E, Syvänen AC, Taddeo F, Taylor B, Blackwell JM, Tienari P, Bramon E, Tourbah A, Brown MA, Tronczynska E, Casas JP, Tubridy N, Corvin A, Vickery J, Jankowski J, Villoslada P, Markus HS, Wang K, Mathew CG, Wason J, Palmer CN, Wichmann HE, Plomin R, Willoughby E, Rautanen A, Winkelmann J, Wittig M, Trembath RC, Yaouanq J, Viswanathan AC, Zhang H, Wood NW, Zuvich R, Deloukas P, Langford C, Duncanson A, Oksenberg JR, Pericak-Vance MA, Haines JL, Olsson T, Hillert J, Ivinson AJ, De Jager PL, Peltonen L, Stewart GJ, Hafler DA, Hauser SL, McVean G, Donnelly P, Compston A (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219PubMedPubMedCentralGoogle Scholar
  99. Schanab O, Humer J, Gleiss A, Mikula M, Sturlan S, Grunt S, Okamoto I, Muster T, Pehamberger H, Waltenberger A (2011) Expression of human endogenous retrovirus K is stimulated by ultraviolet radiation in melanoma. Pigment Cell Melanoma Res 24:656–665PubMedGoogle Scholar
  100. Schmidt S, Wessels L, Augustin A, Klockgether T (2001) Patients with Multiple Sclerosis and concomitant uveitis/periphlebitis retinae are not distinct from those without intraocular inflammation. J Neurol Sci 187:49–53PubMedGoogle Scholar
  101. Scholl PR, Trede N, Chatila TA, Geha RS (1992) Role of protein tyrosine phosphorylation in monokine induction by the staphylococcal superantigen toxic shock syndrome toxin-1. J Immunol 148:2237–2241PubMedGoogle Scholar
  102. Seo KS, Park JY, Davis WC, Fox LK, McGuire MA, Park YH, Bohach GA (2009) Superantigen-mediated differentiation of bovine monocytes into dendritic cells. J Leukoc Biol 85:606–616PubMedPubMedCentralGoogle Scholar
  103. Shirani A, Zhao Y, Karim ME, Evans C, Kingwell E, van der Kop ML, Oger J, Gustafson P, Petkau J, Tremlett H (2012) Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis. JAMA 308:247–256PubMedGoogle Scholar
  104. Smith ME, Stone LA, Albert PS, Frank JA, Martin R, Armstrong M, Maloni H, McFarlin DE, McFarland HF (1993) Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 33:480–489PubMedGoogle Scholar
  105. Staege MS, Dick T, Reske-Kunz AB (1996) Functionally active T cell receptor/CD3 complexes are present at the surface of cloned cytotoxic T cells without fluorescence-immunological detectability. Cell Immunol 171:62–67PubMedGoogle Scholar
  106. Staege MS, Holtappels R, Thomas D, Reddehase MJ, Reske-Kunz AB (1998) Proliferation and MHC-unrestricted bystander lysis of cytotoxic T cells following antigen self-presentation. Med Microbiol Immunol 187:17–21PubMedGoogle Scholar
  107. Staege MS, Schneider J, Eulitz M, Scholz S, Bornkamm GW, Wölfel T, Reske-Kunz AB (2000) Consequences of antigen self-presentation by tumour-specific cytotoxic T cells. Immunobiology 201:332–346PubMedGoogle Scholar
  108. Staege MS, Gisch K, Reske-Kunz AB (2003) Cytotoxic T cells with reciprocal antigenic peptide presentation function are not generally resistant to mutual lysis. Immunol Cell Biol 81:266–274PubMedGoogle Scholar
  109. Steinman L (2007) Antigen-specific therapy of multiple sclerosis: the long-sought magic bullet. Neurotherapeutics 4:661–665PubMedGoogle Scholar
  110. Stengel S, Fiebig U, Kurth R, Denner J (2010) Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer 49:401–411PubMedGoogle Scholar
  111. Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT (2001) Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15:579–589PubMedGoogle Scholar
  112. Sutkowski N, Chen G, Calderon G, Huber BT (2004) Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol 78:7852–7860PubMedPubMedCentralGoogle Scholar
  113. Tai AK, O’Reilly EJ, Alroy KA, Simon KC, Munger KL, Huber BT, Ascherio A (2008) Human endogenous retrovirus-K18 Env as a risk factor in multiple sclerosis. Mult Scler 14:1175–1180PubMedPubMedCentralGoogle Scholar
  114. Tai AK, Luka J, Ablashi D, Huber BT (2009) HHV-6A infection induces expression of HERV-K18-encoded superantigen. J Clin Virol 46:47–48PubMedGoogle Scholar
  115. Takahashi M, Shinohara F, Takada H, Rikiishi H (2001) Effects of superantigen and lipopolysaccharide on induction of CD80 through apoptosis of human monocytes. Infect Immun 69:3652–3657PubMedPubMedCentralGoogle Scholar
  116. Toufaily C, Landry S, Leib-Mosch C, Rassart E, Barbeau B (2011) Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. Viruses 3:2146–2159PubMedPubMedCentralGoogle Scholar
  117. Trede NS, Geha RS, Chatila T (1991) Transcriptional activation of IL-1 beta and tumor necrosis factor-alpha genes by MHC class II ligands. J Immunol 146:2310–2315PubMedGoogle Scholar
  118. Turcanova VL, Bundgaard B, Höllsberg P (2009) Human herpesvirus-6B induces expression of the human endogenous retrovirus K18-encoded superantigen. J Clin Virol 46:15–19PubMedGoogle Scholar
  119. Van Lambalgen R, Sanders EACM, D’Amaro J (1986) Sex distribution, age of onset and HLA profiles in two types of multiple sclerosis. J Neurol Sci 76:13–21PubMedGoogle Scholar
  120. Vidlak D, Mariani MM, Aldrich A, Liu S, Kielian T (2011) Roles of Toll-like receptor 2 (TLR2) and superantigens on adaptive immune responses during CNS staphylococcal infection. Brain Behav Immun 25:905–914PubMedPubMedCentralGoogle Scholar
  121. Vainchtein ID, Vinet J, Brouwer N, Brendecke S, Biagini G, Biber K, Boddeke HW, Eggen BJ (2014) In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia. doi: 10.1002/glia.22711
  122. Yoon S, Bae KL, Shin JY, Yoo HJ, Lee HW, Baek SY, Kim BS, Kim JB, Lee HD (2001) Analysis of the in vivo dendritic cell response to the bacterial superantigen staphylococcal enterotoxin B in the mouse spleen. Histol Histopathol 16:1149–1159PubMedGoogle Scholar
  123. Yu C, Shen K, Lin M, Chen P, Lin C, Chang GD, Chen H (2002) GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 277:50062–50068PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexander Emmer
    • 1
  • Martin S. Staege
    • 2
  • Malte E. Kornhuber
    • 1
  1. 1.Department of NeurologyMartin-Luther-University Halle-WittenbergHalle (Saale)Germany
  2. 2.Department of PediatricsMartin-Luther-University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations