Cellular and Molecular Neurobiology

, Volume 34, Issue 5, pp 659–667 | Cite as

The Cytoplasmic Domain of Rat Synaptotagmin I Enhances Synaptic Transmission

  • Shao-Ying Hua
  • Ali Syed
  • Thierry C. Aupérin
  • Liang Tong
Original Research


Synaptotagmin, an integral membrane protein of synaptic vesicles, functions as a calcium sensor in the temporal control of neurotransmitter release. Although synaptotagmin facilitates lipid membrane fusion in biochemical experiments, overexpression of synaptotagmin inhibits neurotransmission. A facilitatory effect of synaptotagmin on synaptic transmission was never observed. To determine whether synaptotagmin may accelerate synaptic transmission in vivo, we injected the cytoplasmic domain of rat synaptotagmin I (CD-syt) into crayfish motor axons and tested the effect of CD-syt on synaptic response. We confirmed that CD-syt accelerates neuromuscular transmission. The injected preparation had larger synaptic potentials with shorter rise time. Experiments with varying calcium concentrations showed that CD-syt increased the maximum synaptic response of the neuromuscular synapses. Further tests on short-term plasticity of neuromuscular synapses revealed that CD-syt increases the release probability of the release-ready vesicles.


Neurotransmitter release Synaptic vesicle fusion Synaptic plasticity 



We thank Dr. James Mohler and Dr. Claudio G. Giraudo for their kind help in protein expression. This study was supported by Graduate Research Technology Incentive Program of York College, The City University of New York.

Conflict of interest

The authors declare no competing financial interests.


  1. Bai J, Chapmen ER (2004) The C2 domains of synaptotagmin–partners in exocytosis. Trends Biochem Sci 29:143–151PubMedCrossRefGoogle Scholar
  2. Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259PubMedCrossRefGoogle Scholar
  3. Broadie K, Bellen HJ, DiAntonio A, Littleton JT, Schwarz TL (1994) Absence of synaptotagmin disrupts excitation–secretion coupling during synaptic transmission. Proc Natl Acad Sci USA 91:10727–10731PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chapman ER (2002) Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498–508PubMedCrossRefGoogle Scholar
  5. Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77:615–641PubMedCrossRefGoogle Scholar
  6. Chapman ER, Davis AF (1998) Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J Biol Chem 273:13995–14001PubMedCrossRefGoogle Scholar
  7. Desai RC, Vyas B, Earles CA, Littleton JT, Kowalchyck JA, Martin TF, Chapman ER (2000) The C2B domain of synaptotagmin is a Ca(2 +)-sensing module essential for exocytosis. J Cell Biol 150(5):1125–1136PubMedCentralPubMedCrossRefGoogle Scholar
  8. DiAntonio A, Schwarz TL (1994) The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron 12:909–920PubMedCrossRefGoogle Scholar
  9. Earles CA, Bai J, Wang P, Chapman ER (2001) The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J Cell Biol 154(6):1117–1123PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fernández-Chacón R, Königstorfer A, Gerber SH, García J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Südhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410(6824):41–49PubMedCrossRefGoogle Scholar
  11. Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727PubMedCrossRefGoogle Scholar
  12. Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313:676–680PubMedCrossRefGoogle Scholar
  13. Hua SY, Teylan M, Cimenser A (2007) An antibody to synaptotagmin I facilitates synaptic transmission. Eur J Neurosci 25:3217–3225PubMedCrossRefGoogle Scholar
  14. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207PubMedCrossRefGoogle Scholar
  15. Jorgensen EM, Hartwieg E, Schuske K, Nonet ML, Jin Y, Horvitz HR (1995) Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378:196–199PubMedCrossRefGoogle Scholar
  16. Kyoung M, Srivastava A, Zhang Y, Diao J, Vrljic M, Grob P, Nogales E, Chu S, Brunger AT (2011) In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc Natl Acad Sci USA 108:E304–E313PubMedCentralPubMedCrossRefGoogle Scholar
  17. Lee HK, Yang Y, Su Z, Hyeon C, Lee TS, Lee HW, Kweon DH, Shin YK, Yoon TY (2010) Dynamic Ca2+ -dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328(5979):760–763PubMedCentralPubMedCrossRefGoogle Scholar
  18. Littleton JT, Stern M, Schulze K, Perin M, Bellen HJ (1993) Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. Cell 74(6):1125–1134PubMedCrossRefGoogle Scholar
  19. Martin KC, Hu Y, Armitage BA, Siegelbaum SA, Kandel ER, Kaang BK (1995) Evidence for synaptotagmin as an inhibitory clamp on synaptic vesicle release in Aplysia neurons. Proc Natl Acad Sci USA 92:11307–11311PubMedCentralPubMedCrossRefGoogle Scholar
  20. Morimoto T, Wang X, Poo MM (1997) Overexpression of synaptotagmin modulates short-term synaptic plasticity at developing neuromuscular junctions. Neuroscience 82:969–978CrossRefGoogle Scholar
  21. Nishiki T, Augustine GJ (2004) Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. J Neurosci 24:6127–6132PubMedCrossRefGoogle Scholar
  22. Perin MS, Brose N, Jahn R, Südhof TC (1991) Domain structure of synaptotagmin (p65). J Biol Chem 266:623–629PubMedGoogle Scholar
  23. Petrenko AG, Perin MS, Davletov BA, Ushkaryov YA, Geppert M, Südhof TC (1991) Binding of synaptotagmin to the alpha-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 353:65–68PubMedCrossRefGoogle Scholar
  24. Reist NE, Buchanan J, Li J, DiAntonio A, Buxton EM, Schwarz TL (1998) Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J Neurosci 18:7662–7673PubMedGoogle Scholar
  25. Silverman-Gavrila LB, Orth PM, Charlton MP (2005) Phosphorylation-dependent low-frequency depression at phasic synapses of a crayfish motoneuron. J Neurosci 25:3168–3180PubMedCrossRefGoogle Scholar
  26. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418PubMedCrossRefGoogle Scholar
  27. Strynadka NC, Cherney M, Sielecki AR, Li MX, Smillie LB, James MN (1997) Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 Å resolution. J Mol Biol 273:238–255PubMedCrossRefGoogle Scholar
  28. Südhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277:7629–7632PubMedCrossRefGoogle Scholar
  29. Südhof TC, Rizo J (1996) Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 17:379–388PubMedCrossRefGoogle Scholar
  30. Sugita S, Shin OH, Han W, Lao Y, Südhof TC (2002) Synaptotagmins form a hierarchy of exocytotic Ca(2+) sensors with distinct Ca(2+) affinities. EMBO J 21(3):270–280PubMedCentralPubMedCrossRefGoogle Scholar
  31. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Südhof TC (2006) A complexin/synaptotamin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–1187PubMedCrossRefGoogle Scholar
  32. Tucker WC, Edwardson JM, Bai J, Kim HJ, Martin TF, Chapman ER (2003) Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells. J Cell Biol 162(2):199–209PubMedCentralPubMedCrossRefGoogle Scholar
  33. Tucker WC, Weber T, Chapman ER (2004) Reconstitution of Ca2+ -regulated membrane fusion by synaptotagmin and SNAREs. Science 304(5669):435–438PubMedCrossRefGoogle Scholar
  34. van den Bogaart G, Thutupalli S, Risselada JH, Meyenberg K, Holt M, Riedel D, Diederichsen U, Herminghaus S, Grubmüller H, Jahn R (2011) Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nat Struct Mol Biol 18:805–812PubMedCentralPubMedCrossRefGoogle Scholar
  35. Wang Z, Liu H, Gu Y, Chapman ER (2011) Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion. J Cell Biol 195:1159–1170PubMedCentralPubMedCrossRefGoogle Scholar
  36. Yoshihara M, Littleton JT (2002) Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 36:897–908PubMedCrossRefGoogle Scholar
  37. Zhang JZ, Davletov BA, Südhof TC, Anderson RG (1994) Synaptotagmin I is a high-affinity receptor for clathrin AP-2: implications for membrane recycling. Cell 78:751–760PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shao-Ying Hua
    • 1
  • Ali Syed
    • 1
  • Thierry C. Aupérin
    • 2
  • Liang Tong
    • 2
  1. 1.Department of Biology, York College and Graduate CenterThe City University of New YorkJamaicaUSA
  2. 2.Department of Biological SciencesColumbia UniversityNew YorkUSA

Personalised recommendations