Skip to main content
Log in

14-3-3 Proteins in the Regulation of Rotenone-Induced Neurotoxicity Might be via Its Isoform 14-3-3Epsilon’s Involvement in Autophagy

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

14-3-3 proteins have been confirmed to be involved in Parkinson’s disease. It has been reported that an increase of 14-3-3 (theta, epsilon, and gamma) expression has neuroprotective effect in response to rotenone and MPP+ in dopaminergic cell culture and transgenic C. elegans with alpha-synuclein overexpression. To further investigate the detail mechanism of 14-3-3 proteins in rotenone-induced dopamine neurotoxicity, we observed the expression of 14-3-3 isoforms, and the influence of 14-3-3epsilon knockdown on autophagic activity and cell function. The results showed that rotenone led to a decrease in expression of 14-3-3 protein and mRNA, and an increase in expression and aggregation of alpha-synuclein protein. Knockdown of 14-3-3epsilon expression in turn further aggravated PC12 cell damage, such as an enhancement of ROS formation, and a reduction of cell viability and ATP production. Further experiments confirmed that the autophagic activity was promoted with 14-3-3epsilon siRNA transfection, including an enhancement of autophagosome formation and the ratio of LC3-II/LC3-I. Therefore, we concluded that the regulation of 14-3-3 proteins in rotenone-induced neurotoxicity might be associated with its isoform 14-3-3epsilon’s involvement in autophagy, which might be considered a mechanism in addition to the currently known function of 14-3-3 proteins in neurodegenerative disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boston PF, Jackson P, Thompson RJ (1982) Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J Neurochem 38:1475–1482

    Article  PubMed  CAS  Google Scholar 

  • Bustos DM (2012) The role of protein disorder in the 14-3-3 interaction network. Mol Biosyst 8:178–184

    Article  PubMed  CAS  Google Scholar 

  • Cannon JR, Greenamyre JT (2010) Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog Brain Res 184:17–33

    Article  PubMed  CAS  Google Scholar 

  • Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Los MJ (2013) Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp 61:43–58

    Article  CAS  Google Scholar 

  • Chen XW, Wang T, Yuan KX, Wang YJ, Wang SR, Sun SG, Chen ZB (2012) Adenovirus vector mediated human 14-3-3 gamma gene transfer protects dopaminergic cells against rotenone-induced injury. Zhonghua Yi Xue Za Zhi 92:55–59

    PubMed  CAS  Google Scholar 

  • Ebrahimi-Fakhari D, Wahlster L, McLean PJ (2012) Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol 124:153–172

    Article  PubMed  CAS  Google Scholar 

  • Ichimura T, Isobe T, Okuyama T, Yamauchi T, Fujisawa H (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II. FEBS Lett 219:79–82

    Article  PubMed  CAS  Google Scholar 

  • Jafar-Nejad P, Ward CS, Richman R, Orr HT, Zoghbi HY (2011) Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration. Proc Natl Acad Sci USA 108:2142–2147

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto Y, Akiguchi I, Nakamura S, Honjyo Y, Shibasaki H, Budka H (2002) 14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brains. J Neuropathol Exp Neurol 61:245–253

    PubMed  CAS  Google Scholar 

  • Kurz A, May C, Schmidt O, Muller T, Stephan C, Meyer HE, Gispert S, Auburger G, Marcus K (2012) A53T-alpha-synuclein-overexpression in the mouse nigrostriatal pathway leads to early increase of 14-3-3epsilon and late increase of GFAP. J Neural Transm 119:297–312

    Article  PubMed  CAS  Google Scholar 

  • Mackie S, Aitken A (2005) Novel brain 14-3-3 interacting proteins involved in neurodegenerative disease. FEBS J 272:4202–4210

    Article  PubMed  CAS  Google Scholar 

  • Nistico R, Mehdawy B, Piccirilli S, Mercuri N (2011) Paraquat- and rotenone-induced models of Parkinson’s disease. Int J Immunopathol Pharmacol 24:313–322

    PubMed  CAS  Google Scholar 

  • Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) Alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19:5782–5791

    PubMed  CAS  Google Scholar 

  • Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199

    PubMed  CAS  Google Scholar 

  • Pozuelo-Rubio M (2011a) 14-3-3zeta binds class III phosphatidylinositol-3-kinase and inhibits autophagy. Autophagy 7:240–242

    Article  PubMed  Google Scholar 

  • Pozuelo-Rubio M (2011b) Regulation of autophagic activity by 14-3-3zeta proteins associated with class III phosphatidylinositol-3-kinase. Cell Death Differ 18:479–492

    Article  PubMed  CAS  Google Scholar 

  • Roseboom PH, Weller JL, Babila T, Aitken A, Sellers LA, Moffett JR, Namboodiri MA, Klein DC (1994) Cloning and characterization of the epsilon and zeta isoforms of the 14-3-3 proteins. DNA Cell Biol 13:629–640

    Article  PubMed  CAS  Google Scholar 

  • Sai Y, Wu Q, Le W, Ye F, Li Y, Dong Z (2008) Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicol In Vitro 22:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Shirabe S, Eguchi H, Tsujino A, Eguchi K, Satoh A, Tsujihata M, Niwa M, Katamine S, Kurihara S, Matsuo H (2006) 14-3-3 protein, total tau and phosphorylated tau in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease and neurodegenerative disease in Japan. Cell Mol Neurobiol 26:45–52

    Article  PubMed  Google Scholar 

  • Shirakashi Y, Kawamoto Y, Tomimoto H, Takahashi R, Ihara M (2006) Alpha-Synuclein is colocalized with 14-3-3 and synphilin-1 in A53T transgenic mice. Acta Neuropathol 112:681–689

    Article  PubMed  CAS  Google Scholar 

  • Slone SR, Lesort M, Yacoubian TA (2011) 14-3-3theta protects against neurotoxicity in a cellular Parkinson’s disease model through inhibition of the apoptotic factor Bax. PLoS One 6:e21720

    Article  PubMed  CAS  Google Scholar 

  • Son JH, Shim JH, Kim KH, Ha JY, Han JY (2012) Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 44:89–98

    Article  PubMed  CAS  Google Scholar 

  • Steinacker P, Aitken A, Otto M (2011) 14-3-3 proteins in neurodegeneration. Semin Cell Dev Biol 22:696–704

    Article  PubMed  CAS  Google Scholar 

  • Umahara T, Uchihara T, Nakamura A, Iwamoto T (2011) Differential expression of 14-3-3 protein isoforms in developing rat hippocampus, cortex, rostral migratory stream, olfactory bulb, and white matter. Brain Res 1410:1–11

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Ling S, Lin WC (2010) 14-3-3Tau regulates Beclin 1 and is required for autophagy. PLoS One 5:e10409

    Article  PubMed  Google Scholar 

  • Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:956–959

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    Article  PubMed  CAS  Google Scholar 

  • Yacoubian T, Slone S, Harrington A, Hamamichi S, Schieltz J, Caldwell K, Caldwell G, Standaert D (2010) Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson’s disease. Cell Death Dis 1:e2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NSFC (Natural Science Foundation of China) (30800932, 81273106) to Yan Sai and Natural Science Foundation of Chongqing (cstc2012jjA10028) to Yan Sai.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Cao or Zhaojun Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sai, Y., Peng, K., Ye, F. et al. 14-3-3 Proteins in the Regulation of Rotenone-Induced Neurotoxicity Might be via Its Isoform 14-3-3Epsilon’s Involvement in Autophagy. Cell Mol Neurobiol 33, 1109–1121 (2013). https://doi.org/10.1007/s10571-013-9977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9977-9

Keywords

Navigation