Skip to main content

Advertisement

Log in

Lithium’s Gene Expression Profile, Relevance to Neuroprotection A cDNA Microarray Study

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 22 August 2022

This article has been updated

Abstract

Lithium can prevent 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dopaminergic neurotoxicity in mice. This is attributed to induced antioxidant and antiapoptotic state, which among other factors results from induction of Bcl-2 and reduction of Bax, however, cDNA microarray reveals that this represents only one cascade of lithium targets. From analyzing the gene expression profile of lithium, we are able to point out candidate genes that might be involved in the antioxidant and neuroprotective properties of lithium. Among these are, the cAMP response element binding (CREB) protein, extracellular signal-regulated kinase (ERK), both CREB and ERK—part of the mitogen-activated kinase pathway—were upregulated by lithium, downregulated by MPTP, and maintained in mice fed with lithium chloride (LiCl) supplemented diet and treated with MPTP. Our positive control included tyrosine hydroxylase which both its mRNA and protein levels were independently measured, in addition to Bcl-2 protein levels. Other important genes which were similarly regulated are plasma glutathione peroxidase precursor (GSHPX-P), protein kinase C alpha type, insulin-like growth factor binding protein 4 precursor, and interferon regulatory factor. In addition, some genes were oppositely regulated, i.e., downregulated by lithium, upregulated by MPTP, and maintained in mice fed with LiCl supplemented diet and treated with MPTP, among these genes were basic fibroblast growth factor receptor 1 precursor, inhibin alpha subunit, glutamate receptor subunit zeta 1 precursor (NMD-R1), postsynaptic density protein-95 which together with NMD-R1 can form an apoptotic promoting complex. The discussed targets represent part of genes altered by chronic lithium. In fact lithium affected the expressions of more than 50 genes among these were basic transcription factors, transcription activators, cell signaling proteins, cell adhesion proteins, oncogenes and tumor suppressors, intracellular transducers, survival and death genes, and cyclins, here we discuss the relevance of these changes to lithium’s reported neuroprotective properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Abbreviations

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

TH:

Tyrosine hydroxylase

PD:

Parkinson’s disease

SNpc:

Substantia nigra pars compact

ERK:

Extracellular-regulated kinase

CREB:

cAMP responsive element binding

MAPK:

Mitogen-activated protein kinase

References

  • Arraf Z, Amit T et al (2012) Lithium and oxidative stress lessons from the MPTP model of Parkinson’s disease. Neurosci Lett 516(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev 2:325–332

    Article  CAS  Google Scholar 

  • Cade JF (2000) Lithium salts in the treatment of psychotic excitement. 1949. Bull World Health Organ 78(4):518–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell S, MacQueen G (2006) An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 19(1):25–33

    Article  PubMed  Google Scholar 

  • Chalecka-Franaszek E, Chuang DM (1999) Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci USA 96(15):8745–8750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RW, Chuang DM (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 274(10):6039–6042

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yuan P-X et al (1998) Lithium increases tyrosine hydroxylase levels both in vivo and in vitro. J Neurochem 70(4):1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zeng WZ et al (1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 72(2):879–882

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Rajkowska G et al (2000) Enhancement of hippocampal neurogenesis by lithium. J Neurochem 75(4):1729–1734

    Article  CAS  PubMed  Google Scholar 

  • Chiu CT, Chuang DM (2010) Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 128(2):281–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang DM (2004) Neuroprotective and neurotrophic actions of the mood stabilizer lithium: can it be used to treat neurodegenerative diseases? Crit Rev Neurobiol 16(1–2):83–90

    Article  CAS  PubMed  Google Scholar 

  • Chuang DM, Chen RW et al (2002) Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord 4(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • De Sarno P, Li X et al (2002) Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology 43(7):1158–1164

    Article  PubMed  Google Scholar 

  • Duggan DJ, Bittner M et al (1999) Expression profiling using cDNA microarrays. Nat Genet 21(1 Suppl):10–14

    Article  CAS  PubMed  Google Scholar 

  • Eugenin EA, King JE et al (2007) HIV-tat induces formation of an LRP-PSD-95-NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci USA 104(9):3438–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemi M, Dehpour AR (2011) The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci 32(7):420–434

    Article  CAS  PubMed  Google Scholar 

  • Ghee M, Baker H et al (1998) AP-1, CREB and CBP transcription factors differentially regulate the tyrosine hydroxylase gene. Brain Res Mol Brain Res 55(1):101–114

    Article  CAS  PubMed  Google Scholar 

  • Goodwin FK, Ghaemi SN (1999) The impact of the discovery of lithium on psychiatric thought and practice in the USA and Europe. Aust N Z J Psychiatry 33(Suppl):S54–S64

    Article  PubMed  Google Scholar 

  • Graves DJ (1999) Powerful tools for genetic analysis come of age. Trends Biotechnol 17(3):127–134

    Article  CAS  PubMed  Google Scholar 

  • Grimes CA, Jope RS (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78(6):1219–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunblatt E, Mandel S et al (2001) Effects of R- and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss. J Neurochem 77(1):146–156

    Article  CAS  PubMed  Google Scholar 

  • Hammonds MD, Shim SS et al (2007) Effects of subchronic lithium treatment on levels of BDNF, Bcl-2 and phospho-CREB in the rat hippocampus. Basic Clin Pharmacol Toxicol 100(5):356–359

    Article  CAS  PubMed  Google Scholar 

  • Hantraye P, Brouillet E et al (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced Parkinsonism in baboons. Nat Med 2(9):1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Zhao Y et al (2012) Fluoxetine upregulates phosphorylated-AKT and phosphorylated-ERK1/2 proteins in neural stem cells: evidence for a crosstalk between AKT and ERK1/2 pathways. J Mol Neurosci. doi:10.1007/s12031-012-9822-5

  • Johannessen M, Delghandi MP et al (2004) What turns CREB on? Cell Signal 16(11):1211–1227

    Article  CAS  PubMed  Google Scholar 

  • Jope RS, Williams MB (1994) Lithium and brain signal transduction systems. Biochem Pharmacol 47(3):429–441

    Article  CAS  PubMed  Google Scholar 

  • Karmarkar SW, Bottum KM et al (2011) ERK/MAPK is essential for endogenous neuroprotection in SCN2.2 cells. PLoS ONE 6(8):e23493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastner A, Herrero MT et al (1994) Decreased tyrosine hydroxylase content in the dopaminergic neurons of MPTP-intoxicated monkeys: effect of levodopa and GM1 ganglioside therapy. Ann Neurol 36(2):206–214

    Article  CAS  PubMed  Google Scholar 

  • Kopnisky KL, Chalecka-Franaszek E et al (2003) Chronic lithium treatment antagonizes glutamate-induced decrease of phosphorylated CREB in neurons via reducing protein phosphatase 1 and increasing MEK activities. Neuroscience 116(2):425–435

    Article  CAS  PubMed  Google Scholar 

  • Lagace DC, Eisch AJ (2005) Mood-stabilizing drugs: are their neuroprotective aspects clinically relevant? Psychiatr Clin North Am 28(2):399–414

    Article  PubMed  Google Scholar 

  • Li JL, Jing ZZ et al (2003) Effects of lithium on the activity of ERK-1/2 signal pathway and expression of Bcl-2 family proteins in the central nervous system in vivo. Hunan Yi Ke Da Xue Xue Bao 28(4):330–334

    CAS  PubMed  Google Scholar 

  • Machado-Vieira R, Manji HK et al (2009) The role of the tripartite glutamatergic synapse in the pathophysiology and therapeutics of mood disorders. Neuroscientist 15(5):525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manji HK, Lenox RH (1994) Long-term action of lithium: a role for transcriptional and posttranscriptional factors regulated by protein kinase C. Synapse 16(1):11–28

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Potter WZ et al (1995) Signal transduction pathways. Molecular targets for lithium’s actions. Arch Gen Psychiatry 52(7):531–543

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Moore GJ et al (2000) Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry 61(Suppl 9):82–96

    CAS  PubMed  Google Scholar 

  • Miller JC, Jimenez P et al (2006) Restraint stress influences AP-1 and CREB DNA-binding activity induced by chronic lithium treatment in the rat frontal cortex and hippocampus. Int J Neuropsychopharmacol 10(5):609–619

    PubMed  Google Scholar 

  • Monkul ES, Nicoletti MA et al (2006) MRI study of thalamus volumes in juvenile patients with bipolar disorder. Depress Anxiety 23(6):347–352

    Article  PubMed  Google Scholar 

  • Moore GJ, Bebchuk JM et al (2000a) Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects? Biol Psychitary 48(1):1–8

    Article  CAS  Google Scholar 

  • Moore GJ, Bebchuk JM et al (2000b) Lithium-induced increase in human brain grey matter. Lancet 356(9237):1241–1242

    Article  CAS  PubMed  Google Scholar 

  • Mora A, Sabio G et al (2002) Lithium blocks the PKB and GSK3 dephosphorylation induced by ceramide through protein phosphatase-2A. Cell Signal 14(6):557–562

    Article  CAS  PubMed  Google Scholar 

  • Morabito MA, Sheng M et al (2004) Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci 24(4):865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Montano JR, Moreno FJ et al (1997) Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons. FEBS Lett 411(2–3):183–188

    Article  CAS  PubMed  Google Scholar 

  • Nadon R, Shoemaker J (2002) Statistical issues with microarrays: processing and analysis. Trends Genet 18(5):265–271

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TB, Manova K et al (2002) Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin. J Biol Chem 277(44):41960–41969

    Article  CAS  PubMed  Google Scholar 

  • Nonaka S, Chuang DM (1998) Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. NeuroReport 9(9):2081–2084

    Article  CAS  PubMed  Google Scholar 

  • Nonaka S, Hough CJ et al (1998) Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-d-aspartate receptor-mediated calcium influx. Proc Natl Acad Sci USA 95(5):2642–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Offen D, Beart PM et al (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Proc Natl Acad Sci USA 95(10):5789–5794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo R, Andreolotti AG et al (2003) Opposed effects of lithium on the MEK-ERK pathway in neural cells: inhibition in astrocytes and stimulation in neurons by GSK3 independent mechanisms. J Neurochem 87(2):417–426

    Article  CAS  PubMed  Google Scholar 

  • Perez M, Hernandez F et al (2003) Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis 5(4):301–308

    Article  CAS  PubMed  Google Scholar 

  • Piech-Dumas KM, Tank AW (1999) CREB mediates the cAMP-responsiveness of the tyrosine hydroxylase gene: use of an antisense RNA strategy to produce CREB-deficient PC12 cell lines. Brain Res Mol Brain Res 70(2):219–230

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V et al (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci USA 93(10):4565–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przedborski S, Jackson-Lewis V et al (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76(5):1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Pugazhenthi S, Nesterova A et al (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275(15):10761–10766

    Article  CAS  PubMed  Google Scholar 

  • Quackenbush J (2006) Computational approaches to analysis of DNA microarray data. Methods Inf Med 45(Suppl 1):91–103

    Google Scholar 

  • Ryves WJ, Harwood AJ (2001) Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res 280:720–725

    Article  CAS  Google Scholar 

  • Satoh T, Nakatsuka D et al (2000) Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett 288(2):163–166

    Article  CAS  PubMed  Google Scholar 

  • Sattler R, Charlton MP et al (1998) Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 71(6):2349–2364

    Article  CAS  PubMed  Google Scholar 

  • Schulz JB, Matthews RT et al (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 64(2):936–939

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Nankova BB et al (2006) Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res 1107(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Sheline YI (2003) Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 54(3):338–352

    Article  PubMed  Google Scholar 

  • Soares JC, Mann JJ (1997) The anatomy of mood disorders—review of structural neuroimaging studies. Biol Psychiatry 41(1):86–106

    Article  CAS  PubMed  Google Scholar 

  • Valdes JJ, Weeks OI (2009) Estradiol and lithium chloride specifically alter NMDA receptor subunit NR1 mRNA and excitotoxicity in primary cultures. Brain Res 1268:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada A, Yokoo H et al (2005) Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. J Pharmacol Sci 99(4):307–321

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Qin ZH et al (2001) Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington’s disease. Neuroscience 106(3):603–612

    Article  CAS  PubMed  Google Scholar 

  • Xiang H, Wang J et al (2006) Role of the cyclic AMP response element in the bcl-2 promoter in the regulation of endogenous Bcl-2 expression and apoptosis in murine B cells. Mol Cell Biol 26(22):8599–8606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Cawthon D et al (2005) Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells. Neurotoxicology 26(4):729–737

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Matthews RT et al (1998) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2. J Neurosci 18(20):8145–8152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youdim MB, Arraf Z (2004) Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax. Neuropharmacology 46(8):1130–1140

    Article  CAS  PubMed  Google Scholar 

  • Yuan P, Chen G et al (1999) Lithium activates the c-Jun NH2-terminal kinases in vitro and in the CNS in vivo. J Neurochem 73:2299–2309

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Edelmann L et al (2008) Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors. J Neurosci 28(2):415–424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zigova T, Willing AE et al (1999) Lithium chloride induces the expression of tyrosine hydroxylase in hNT neurons. Exp Neurol 157:251–258

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaher Arraf or Raymond Farah.

Additional information

The original online version of this article was revised: the order of author names has been corrected and included Zaher Arraf as co-corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arraf, Z., Khamisy-Farah, R., Amit, T. et al. Lithium’s Gene Expression Profile, Relevance to Neuroprotection A cDNA Microarray Study. Cell Mol Neurobiol 33, 411–420 (2013). https://doi.org/10.1007/s10571-013-9907-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9907-x

Keywords

Navigation