Advertisement

Cellular and Molecular Neurobiology

, Volume 34, Issue 2, pp 247–255 | Cite as

Expression and Cell Distribution of Neuroglobin in the Brain Tissue After Experimental Subarachnoid Hemorrhage in Rats: A Pilot Study

  • Wei-De Li
  • Qing Sun
  • Xiang-Sheng Zhang
  • Chun-Xi Wang
  • Song Li
  • Wei Li
  • Chun-Hua Hang
Original Research

Abstract

Neuroglobin (Ngb) is a member of the globin superfamily expressed mainly in the nervous system and retina of vertebrates. Accumulated evidence has clearly demonstrated that Ngb has a neuro-protective role enhancing cell viability under hypoxia and other types of oxidative stress. It was suggested that oxidant stress could play an important role in neuronal injury after subarachnoid hemorrhage (SAH). The present study aims to examine the expression of Ngb in the temporal cortex and its cellular localization after SAH. We used a prechiasmatic cistern model of SAH. Ngb expression was examined at 3, 6, 12, 24, 48, and 72 h after SAH by western blot analysis and real-time polymerase chain reaction (PCR). Immunohistochemistry and immunofluorescence were performed to detect the localization of Ngb. Real-time PCR demonstrated that Ngb mRNA levels increased from 3 h after SAH, peaked at 6 h. Western blot showed Ngb protein levels were significantly increased in SAH groups in the temporal cortex and reached the peak at 24 h after SAH. The immunohistochemical staining demonstrated that Ngb was weakly expressed in the cortex in the control group while the enhanced expression of Ngb could be detected in the SAH groups. In addition, immunofluorescence results revealed that the over-expressed Ngb was located in the neuronal and microglia cell cytoplasm. These findings indicated that Ngb might play an important neuro-protective effect after SAH.

Keywords

Subarachnoid hemorrhage Neuroglobin Rat cortex Expression 

Notes

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (No. 81171170, 81371294), and the Military Medical Scientific and Technological Innovation Project (10Z024).

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Bederson JB, Germano IM, Guarino L (1995) Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke J Cereb Circ 26(6):1086–1091 discussion 1091-1082CrossRefGoogle Scholar
  2. Brunori M, Vallone B (2006) A globin for the brain. FASEB J 20(13):2192–2197. doi: 10.1096/fj.06-6643rev PubMedCrossRefGoogle Scholar
  3. Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407(6803):520–523. doi: 10.1038/35035093 PubMedCrossRefGoogle Scholar
  4. Capece L, Marti MA, Bidon-Chanal A, Nadra A, Luque FJ, Estrin DA (2009) High pressure reveals structural determinants for globin hexacoordination: neuroglobin and myoglobin cases. Proteins 75(4):885–894. doi: 10.1002/prot.22297 PubMedCrossRefGoogle Scholar
  5. Chen LM, Xiong YS, Kong FL, Qu M, Wang Q, Chen XQ, Wang JZ, Zhu LQ (2012) Neuroglobin attenuates Alzheimer-like tau hyperphosphorylation by activating Akt signaling. J Neurochem 120(1):157–164. doi: 10.1111/j.1471-4159.2011.07275.x PubMedCrossRefGoogle Scholar
  6. Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden MC, Caubergs R, Moens L (2001) Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biological Chem 276(42):38949–38955. doi: 10.1074/jbc.M106438200 CrossRefGoogle Scholar
  7. Duong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH (2009) Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia re-oxygenation injury. J Neurochem 108(5):1143–1154. doi: 10.1111/j.1471-4159.2008.05846.x PubMedCrossRefGoogle Scholar
  8. Emara M, Turner AR, Allalunis-Turner J (2010) Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell International 10:33. doi: 10.1186/1475-2867-10-33 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Fago A, Hundahl C, Dewilde S, Gilany K, Moens L, Weber RE (2004) Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin. Molecular mechanisms and physiological significance. J Biological Chem 279(43):44417–44426. doi: 10.1074/jbc.M407126200 CrossRefGoogle Scholar
  10. Giuffre A, Moschetti T, Vallone B, Brunori M (2008) Neuroglobin: enzymatic reduction and oxygen affinity. Biochemical Biophysical Res Commun 367(4):893–898. doi: 10.1016/j.bbrc.2008.01.021 CrossRefGoogle Scholar
  11. Guo ZD, Sun XC, Zhang JH (2011) Mechanisms of early brain injury after SAH: matrix metalloproteinase 9. Acta Neurochir Supplement 110(Pt 1):63–65. doi: 10.1007/978-3-7091-0353-1_11 Google Scholar
  12. Hop JW, Rinkel GJ, Algra A, van Gijn J (1997) Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke J Cereb Circ 28(3):660–664CrossRefGoogle Scholar
  13. Huang J, van Gelder JM (2002) The probability of sudden death from rupture of intracranial aneurysms: a meta-analysis. Neurosurgery 51(5):1101–1105 discussion 1105-1107PubMedCrossRefGoogle Scholar
  14. Jin K, Mao XO, Xie L, Khan AA, Greenberg DA (2008) Neuroglobin protects against nitric oxide toxicity. Neuroscience Lett 430(2):135–137. doi: 10.1016/j.neulet.2007.10.031 CrossRefGoogle Scholar
  15. Kassell NF, Sasaki T, Colohan AR, Nazar G (1985) Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke J Cereb Circ 16(4):562–572CrossRefGoogle Scholar
  16. Khan AA, Wang Y, Sun Y, Mao XO, Xie L, Miles E, Graboski J, Chen S, Ellerby LM, Jin K, Greenberg DA (2006) Neuroglobin-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia. Proc Natl Acad Sci USA 103(47):17944–17948. doi: 10.1073/pnas.0607497103 PubMedCrossRefGoogle Scholar
  17. Khan AA, Mao XO, Banwait S, Jin K, Greenberg DA (2007) Neuroglobin attenuates beta-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc Natl Acad Sci USA 104(48):19114–19119. doi: 10.1073/pnas.0706167104 PubMedCrossRefGoogle Scholar
  18. Khan AA, Mao XO, Banwait S, DerMardirossian CM, Bokoch GM, Jin K, Greenberg DA (2008) Regulation of hypoxic neuronal death signaling by neuroglobin. FASEB J 22(6):1737–1747. doi: 10.1096/fj.07-100784 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kiger L, Uzan J, Dewilde S, Burmester T, Hankeln T, Moens L, Hamdane D, Baudin-Creuza V, Marden M (2004) Neuroglobin ligand binding kinetics. IUBMB Life 56(11–12):709–719. doi: 10.1080/15216540500037711 PubMedCrossRefGoogle Scholar
  20. Kriegl JM, Bhattacharyya AJ, Nienhaus K, Deng P, Minkow O, Nienhaus GU (2002) Ligand binding and protein dynamics in neuroglobin. Proc Natl Acad Sci USA 99(12):7992–7997. doi: 10.1073/pnas.082244399 PubMedCrossRefGoogle Scholar
  21. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metabolism 24(8):916–925. doi: 10.1097/01.WCB.0000125886.48838.7E CrossRefGoogle Scholar
  22. Li RC, Pouranfar F, Lee SK, Morris MW, Wang Y, Gozal D (2008) Neuroglobin protects PC12 cells against beta-amyloid-induced cell injury. Neurobiol Ag 29(12):1815–1822. doi: 10.1016/j.neurobiolaging.2007.05.001 CrossRefGoogle Scholar
  23. Li RC, Guo SZ, Lee SK, Gozal D (2010) Neuroglobin protects neurons against oxidative stress in global ischemia. J Cereb Blood Flow Metabolism 30(11):1874–1882. doi: 10.1038/jcbfm.2010.90 CrossRefGoogle Scholar
  24. Li W, Liu HD, You WC, Zhou ML, Ling HP, Shen W, Zhu L, Hang CH (2013) Enhanced cortical expression of myeloid differentiation primary response protein 88 (Myd88) in patients with traumatic brain injury. J Surgical Res 180(1):133–139. doi: 10.1016/j.jss.2012.10.928 CrossRefGoogle Scholar
  25. Nornes H (1973) The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg 39(2):226–234. doi: 10.3171/jns.1973.39.2.0226 PubMedCrossRefGoogle Scholar
  26. Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2003) Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11(9):1087–1095PubMedCrossRefGoogle Scholar
  27. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, Kasuya H, Wellman G, Keller E, Zauner A, Dorsch N, Clark J, Ono S, Kiris T, Leroux P, Zhang JH (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurological Res 31(2):151–158. doi: 10.1179/174313209X393564 CrossRefGoogle Scholar
  28. Prunell GF, Mathiesen T, Svendgaard NA (2002) A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport 13(18):2553–2556. doi: 10.1097/01.wnr.0000052320.62862.37 PubMedCrossRefGoogle Scholar
  29. Schievink WI, Riedinger M, Jhutty TK, Simon P (2004) Racial disparities in subarachnoid hemorrhage mortality: Los Angeles County, California, 1985–1998. Neuroepidemiology 23(6):299–305. doi: 10.1159/000080096 PubMedCrossRefGoogle Scholar
  30. Schubert GA, Seiz M, Hegewald AA, Manville J, Thome C (2011) Hypoperfusion in the acute phase of subarachnoid hemorrhage. Acta Neurochir Supplement 110(Pt 1):35–38. doi: 10.1007/978-3-7091-0353-1_6 Google Scholar
  31. Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA (2001) Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci USA 98(26):15306–15311. doi: 10.1073/pnas.251466698 PubMedCrossRefGoogle Scholar
  32. Sun Y, Jin K, Peel A, Mao XO, Xie L, Greenberg DA (2003) Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci USA 100(6):3497–3500. doi: 10.1073/pnas.0637726100 PubMedCrossRefGoogle Scholar
  33. Sun Q, Dai Y, Zhang X, Hu YC, Zhang D, Li W, Zhang XS, Zhu JH, Zhou ML, Hang CH (2013) Expression and cell distribution of myeloid differentiation primary response protein 88 in the cerebral cortex following experimental subarachnoid hemorrhage in rats: a pilot study. Brain Res 1520:134–144. doi: 10.1016/j.brainres.2013.05.010 PubMedCrossRefGoogle Scholar
  34. Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim-Shapiro DB, Gladwin MT (2011) Human neuroglobin functions as a redox-regulated nitrite reductase. J Biological Chem 286(20):18277–18289. doi: 10.1074/jbc.M110.159541 CrossRefGoogle Scholar
  35. Wakasugi K, Nakano T, Morishima I (2003) Oxidized human neuroglobin acts as a heterotrimeric Galpha protein guanine nucleotide dissociation inhibitor. J Biological Chem 278(38):36505–36512. doi: 10.1074/jbc.M305519200 CrossRefGoogle Scholar
  36. You WC, Li W, Zhuang Z, Tang Y, Lu HC, Ji XJ, Shen W, Shi JX, Zhou ML (2012) Biphasic activation of nuclear factor-kappa B in experimental models of subarachnoid hemorrhage in vivo and in vitro. Mediators Inflamm 2012:786242. doi: 10.1155/2012/786242 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Yu Z, Liu N, Li Y, Xu J, Wang X (2013) Neuroglobin overexpression inhibits oxygen-glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons. Neurobiol Dis. doi: 10.1016/j.nbd.2013.04.015 Google Scholar
  38. Zhao S, Yu Z, Zhao G, Xing C, Hayakawa K, Whalen MJ, Lok JM, Lo EH, Wang X (2012) Neuroglobin-overexpression reduces traumatic brain lesion size in mice. BMC Neurosci 13:67. doi: 10.1186/1471-2202-13-67 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wei-De Li
    • 1
  • Qing Sun
    • 2
  • Xiang-Sheng Zhang
    • 1
  • Chun-Xi Wang
    • 2
  • Song Li
    • 1
  • Wei Li
    • 2
  • Chun-Hua Hang
    • 1
  1. 1.Department of NeurosurgerySchool of Medicine, Southern Medical University (Guangzhou), Jinling HospitalNanjingPeople’s Republic of China
  2. 2.Department of NeurosurgeryJinling Hospital, School of Medicine, Nanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations