Advertisement

Cellular and Molecular Neurobiology

, Volume 32, Issue 6, pp 949–952 | Cite as

Acute Spinal Cord Injury Induces Genetic Damage in Multiple Organs of Rats

  • Carla C. Medalha
  • Fernanda S. Polesel
  • Victor Hugo Pereira da Silva
  • Renato Almeida Martins
  • Renan Pozzi
  • Daniel A. Ribeiro
Short Communication

Abstract

Spinal cord injury (SCI) is a devastating condition with important functional and psychological consequences. However, the underlying mechanisms by which these alterations occur are still not fully understood. The aim of this study was to analyze genomic instability in multiple organs in the acute phase of SCI by means of single cell gel (comet) assay. Rats were randomly distributed into two groups (n = 5): a SHAM and a SCI group killed 24 h after cord transection surgery. The results pointed out genetic damage in blood cells as depicted by the tail moment results. DNA breakage was also detected in liver and kidney cells after SCI. Taken together, our results suggest that SCI induces genomic damage in multiple organs of Wistar rats.

Keywords

Rat Spinal cord injury Genetic damage 

References

  1. Basso DM (2004) Behavioral testing after spinal cord injury: congruities, complexities, and controversies. J Neurotrauma 21:395–404PubMedCrossRefGoogle Scholar
  2. Bravo G, Guizar-Shagun G, Ibarra A, Centurio D, Villalon CM (2004) Cardiovascular alterations after spinal cord injury: an overview. Curr Med Chem Cardivasc Hematol Agents 2:133–148CrossRefGoogle Scholar
  3. Califano J, Van Der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, Corio R, Lee D, Greenberg B, Koch W, Sidransky D (1996) Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56:2488–2492PubMedGoogle Scholar
  4. Claydon VE, Steeves JD, Krassioukov A (2006) Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord 44:341–351PubMedCrossRefGoogle Scholar
  5. Cruse J, Keith J, Bryant M, Lewis R (1996) Immune system—neuroendocrine dysregulation in spinal cord injury. Immunol Res 15:306–314PubMedCrossRefGoogle Scholar
  6. Furlan JC, Fehlings MG, Shannon P, Norenberg MD, Krassioukov AV (2003) Descending vasomotor pathways in humans: correlation between axonal preservation and cardiovascular dysfunction after spinal cord injury. J Neurotrauma 20:1351–1363PubMedCrossRefGoogle Scholar
  7. Gilman MT, Brunnemman SR, Segal JL (1993) Comparison of population pharmacokinetics models for gentamicin in spinal cord injury and able-bodied patients. Antimicrob Agents Chemother 37:93–99PubMedCrossRefGoogle Scholar
  8. Guizar-Sahagun G, Castaneda-Hernandez GF, Garcia-Lopez P, Franco-Bourland R, Grijalva I, Madrazo I (1998) Pathophysiology mechanisms involved in systemic and metabolic alterations secondary to spinal cord injury. Proc West Pharmacol Soc 41:237–240PubMedGoogle Scholar
  9. Guizar-Sahagun G, Velasco-Hernandez L, Martinez-Cruz A, Castañeda-Hernández G, Bravo G, Rojas G, Hong E (2004) Systemic microcirculation after complete high and low thoracic spinal cord section in rats. J Neurotrauma 21:1614–1623PubMedGoogle Scholar
  10. Hirotsu C, Tufik S, Ribeiro DA, Alvarenga TA, Andersen ML (2011) Genomic damage in the progression of chronic kidney disease in rats. Brain Behav Immun 25:416–422PubMedCrossRefGoogle Scholar
  11. Howden SE, Gore A, Li Z, Fung HL, Nisler BS, Nie J, Chen G, McIntosh BE, Gulbranson DR, Diol NR, Taapken SM, Vereide DT, Montgomery KD, Zhang K, Gamm DM (2011) Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc Natl Acad Sci USA 108:6537–6542PubMedCrossRefGoogle Scholar
  12. Illman A, Stiller K, Willians M (2000) The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord 38:741–747PubMedCrossRefGoogle Scholar
  13. Kwon BK, Casha S, Hurbert RJ, Yong VW (2011) Inflammatory and structural biomarkers in acute traumatic spinal cord injury. Clin Chem Lab Med 49:425–433PubMedCrossRefGoogle Scholar
  14. Miranda R, Hassouna H (2000) Mechanisms of thrombosis in spinal cord. Hematol Oncol Clin North Am 14:401–416PubMedCrossRefGoogle Scholar
  15. Nagaoka MR, Le Suer-Maluf L, Aguiar O, Castro GM, Spadari-Bratfisch RC, Ribeiro DA (2011) Differential response related to genotoxicity in multiple organs of cirrhotic rats. Hepatol Int 5:740–746PubMedCrossRefGoogle Scholar
  16. Nishi EE, Campos RR, Bergamaschi CT, de Almeida VR, Ribeiro DA (2010) Vitamin C prevents DNA damage induced by renovascular hypertension in multiple organs of Wistar rats. Hum Exp Toxicol 29:593–599PubMedCrossRefGoogle Scholar
  17. Noguti J, Pereira VG, Martins AM, D’Almeida V, Ribeiro DA (2011) Genomic instability in blood cells from murine model of mucopolysaccharidosis type I. J Mol Histol 42:575–578PubMedCrossRefGoogle Scholar
  18. Olivie PL, Banath JP, Durand RE (1990) Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat Res 112:86–94CrossRefGoogle Scholar
  19. Ribeiro DA, Pereira PC, Machado JM, Silva SB, Pessoa AW, Salvadori DM (2004) Does toxoplasmosis cause DNA damage? An evaluation in isogenic mice under normal diet or dietary restriction. Mutat Res 559:169–176PubMedCrossRefGoogle Scholar
  20. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carla C. Medalha
    • 1
  • Fernanda S. Polesel
    • 1
  • Victor Hugo Pereira da Silva
    • 1
  • Renato Almeida Martins
    • 1
  • Renan Pozzi
    • 1
  • Daniel A. Ribeiro
    • 1
  1. 1.Departamento de BiociênciasUniversidade Federal de São Paulo, UNIFESPSantosBrazil

Personalised recommendations