Advertisement

Cellular and Molecular Neurobiology

, Volume 32, Issue 1, pp 121–128 | Cite as

Ginsenoside Rd Protects Neurons Against Glutamate-Induced Excitotoxicity by Inhibiting Ca2+ Influx

  • Chen Zhang
  • Fang Du
  • Ming Shi
  • Ruidong Ye
  • Haoran Cheng
  • Junliang Han
  • Lei Ma
  • Rong Cao
  • Zhiren Rao
  • Gang Zhao
Original Research

Abstract

Our previous studies have demonstrated that ginsenoside Rd (GSRd), one of the principal ingredients of Pana notoginseng, has neuroprotective effects against ischemic stroke. However, the possible mechanism(s) underlying the neuroprotection of GSRd is/are still largely unknown. In this study, we treated glutamate-injured cultured rat hippocampal neurons with different concentrations of GSRd, and then examined the changes in neuronal apoptosis and intracellular free Ca2+ concentration. Our MTT assay showed that GSRd significantly increased the survival of neurons injured by glutamate in a dose-dependent manner. Consistently, TUNEL and Caspase-3 staining showed that GSRd attenuated glutamate-induced cell death. Furthermore, calcium imaging assay revealed that GSRd significantly attenuated the glutamate-induced increase of intracellular free Ca2+ and also inhibited NMDA-triggered Ca2+ influx. Thus, the present study demonstrates that GSRd protects the cultured hippocampal neurons against glutamate-induced excitotoxicity, and that this neuroprotective effect may result from the inhibitory effects of GSRd on Ca2+ influx.

Keywords

Ginsenoside Rd Glutamate Excitotoxicity Calcium influx NMDA receptor 

References

  1. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973PubMedCrossRefGoogle Scholar
  2. Cai BX, Li XY, Chen JH, Tang YB, Wang GL, Zhou JG, Qui QY, Guan YY (2009) Ginsenoside-Rd, a new voltage-independent Ca2+ entry blocker, reverses basilar hypertrophic remodeling in stroke-prone renovascular hypertensive rats. Eur J Pharmacol 606:142–149PubMedCrossRefGoogle Scholar
  3. Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182PubMedCrossRefGoogle Scholar
  4. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277PubMedCrossRefGoogle Scholar
  5. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61PubMedGoogle Scholar
  6. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397PubMedCrossRefGoogle Scholar
  7. Guan YY, Zhou JG, Zhang Z, Wang GL, Cai BX, Hong L, Qiu QY, He H (2006) Ginsenoside-Rd from Panax notoginseng blocks Ca2+ influx through receptor- and store-operated Ca2+ channels in vascular smooth muscle cells. Eur J Pharmacol 548:129–136PubMedCrossRefGoogle Scholar
  8. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415PubMedCrossRefGoogle Scholar
  9. Kalia LV, Kalia SK, Salter MW (2008) NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 7:742–755PubMedCrossRefGoogle Scholar
  10. Kim YC, Kim SR, Markelonis GJ, Oh TH (1998) Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res 53:426–432PubMedCrossRefGoogle Scholar
  11. Kim S, Ahn K, Oh TH, Nah SY, Rhim H (2002) Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem Biophys Res Commun 296:247–254PubMedCrossRefGoogle Scholar
  12. Kim S, Kim T, Ahn K, Park WK, Nah SY, Rhim H (2004) Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem Biophys Res Commun 323:416–424PubMedCrossRefGoogle Scholar
  13. Lee E, Kim S, Chung KC, Choo MK, Kim DH, Nam G, Rhim H (2006) 20(S)-ginsenoside Rh2, a newly identified active ingredient of ginseng, inhibits NMDA receptors in cultured rat hippocampal neurons. Eur J Pharmacol 536:69–77PubMedCrossRefGoogle Scholar
  14. Li N, Liu B, Dluzen DE, Jin Y (2007) Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. J Ethnopharmacol 111:458–463PubMedCrossRefGoogle Scholar
  15. Li XY, Liang J, Tang YB, Zhou JG, Guan YY (2010) Ginsenoside Rd prevents glutamate-induced apoptosis in rat cortical neurons. Clin Exp Pharmacol Physiol 37:199–204PubMedCrossRefGoogle Scholar
  16. Lian XY, Zhang Z, Stringer JL (2006) Anticonvulsant and neuroprotective effects of ginsenosides in rats. Epilepsy Res 70:244–256PubMedCrossRefGoogle Scholar
  17. Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170PubMedCrossRefGoogle Scholar
  18. Liu X, Xia J, Wang L, Song Y, Yang J, Yan Y, Ren H, Zhao G (2009) Efficacy and safety of ginsenoside-Rd for acute ischaemic stroke: a randomized, double-blind, placebo-controlled, phase II multicenter trial. Eur J Neurol 16:569–575PubMedCrossRefGoogle Scholar
  19. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415PubMedCrossRefGoogle Scholar
  20. Lopez MV, Cuadrado MP, Ruiz-Poveda OM, Del Fresno AM, Accame ME (2007) Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta 1770:1308–1316PubMedCrossRefGoogle Scholar
  21. Nah SY, Kim DH, Rhim H (2007) Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev 13:381–404PubMedGoogle Scholar
  22. Ohtani K, Mizutani K, Hatono S, Kasai R, Sumino R, Shiota T, Ushijima M, Zhou J, Fuwa T, Tanaka O (1987) Sanchinan-A, a reticuloendothelial system activating arabinogalactan from Sanchi ginseng (roots of Panax notoginseng). Planta Med 53:166–169PubMedCrossRefGoogle Scholar
  23. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47PubMedCrossRefGoogle Scholar
  24. Rubart M, Wang E, Dunn KW, Field LJ (2003) Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts. Am J Physiol 284:C1654–C1668Google Scholar
  25. Samways DS, Harkins AB, Egan TM (2009) Native and recombinant ASIC1a receptors conduct negligible Ca2+ entry. Cell Calcium 45:319–325PubMedCrossRefGoogle Scholar
  26. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129PubMedCrossRefGoogle Scholar
  27. Wang CZ, McEntee E, Wicks S, Wu JA, Yuan CS (2006a) Phytochemical and analytical studies of Panax notoginseng (Burk.) F.H. Chen. J Nat Med 60:97–106CrossRefGoogle Scholar
  28. Wang G, Wang L, Xiong ZY, Mao B, Li TQ (2006b) Compound salvia pellet, a traditional Chinese medicine, for the treatment of chronic stable angina pectoris compared with nitrates: a meta-analysis. Med Sci Monit 12:1–7Google Scholar
  29. Xia W, Sun C, Zhao Y, Wu L (2011) Hypolipidemic and antioxidant activities of sanchi (Radix notoginseng) in rats fed with a high fat diet. Phytomedicine 18:516–520PubMedCrossRefGoogle Scholar
  30. Yang L, Deng Y, Xu S, Zeng X (2007a) In vivo pharmacokinetic and metabolism studies of ginsenoside Rd. J Chromatogr B 854:77–84CrossRefGoogle Scholar
  31. Yang Z, Chen A, Sun H, Ye Y, Fang W (2007b) Ginsenoside Rd elicits Th1 and Th2 immune responses to ovalbumin in mice. Vaccine 25:161–169PubMedCrossRefGoogle Scholar
  32. Ye R, Han J, Kong X, Zhao L, Cao R, Rao Z, Zhao G (2008) Protective effects of ginsenoside Rd on PC12 cells against hydrogen peroxide. Biol Pharm Bull 31:1923–1927PubMedCrossRefGoogle Scholar
  33. Ye R, Li N, Han J, Kong X, Cao R, Rao Z, Zhao G (2009) Neuroprotective effects of ginsenoside Rd against oxygen–glucose deprivation in cultured hippocampal neurons. Neurosci Res 64:306–310PubMedCrossRefGoogle Scholar
  34. Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, Li P, Liu J, Shi M, Xiong L, Zhao G (2011a) Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 58:391–398PubMedCrossRefGoogle Scholar
  35. Ye R, Zhang X, Kong X, Han J, Yang Q, Zhang Y, Chen Y, Li P, Liu J, Shi M, Xiong L, Zhao G (2011b) Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience 178:169–180PubMedCrossRefGoogle Scholar
  36. Yoshikawa M, Murakami T, Ueno T, Yashiro K, Hirokawa N, Murakami N, Yamahara J, Matsuda H, Saijoh R, Tanaka O (1997) Bioactive saponins and glycosides. VIII. Notoginseng (1): new dammarane-type triterpene oligoglycosides, notoginsenosides-A, -B, -C, and -D, from the dried root of Panax notoginseng (Burk.) F.H. Chen. Chem Pharm Bull 45:1039–1045PubMedCrossRefGoogle Scholar
  37. Zhao H, Li Q, Zhang Z, Pei X, Wang J, Li Y (2009) Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res 1256:111–122PubMedCrossRefGoogle Scholar
  38. Zhou S, Yang Y, Gu X, Ding F (2008) Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci Lett 444:270–274PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chen Zhang
    • 1
  • Fang Du
    • 1
  • Ming Shi
    • 1
  • Ruidong Ye
    • 1
  • Haoran Cheng
    • 1
    • 2
  • Junliang Han
    • 1
  • Lei Ma
    • 1
  • Rong Cao
    • 3
  • Zhiren Rao
    • 3
  • Gang Zhao
    • 1
  1. 1.Department of Neurology, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  2. 2.Lin Tong Air Force Aeromedical Training InstituteXi’anChina
  3. 3.Institute of NeurosciencesThe Fourth Military Medical UniversityXi’anChina

Personalised recommendations