Advertisement

Appearance of Nuclear-sorted Caspase-12 Fragments in Cerebral Cortical and Hippocampal Neurons in Rats Damaged by Autologous Blood Clot Embolic Brain Infarctions

  • Koji Shimoke
  • Yoshinori Matsuki
  • Kenji Fukunaga
  • Yoshinobu Matsumura
  • Eriko Fujita
  • Kensuke Sugihara
  • Masamichi Nobuhara
  • Hiroki Maruoka
  • Toshihiko Ikeuchi
  • Motoshige Kudo
Original Research

Abstract

Following endoplasmic reticulum (ER) stress, cerebral infarctions have been reported to involve an apoptotic process, including the activation of the caspase cascade. To confirm whether fragmented caspase-12, which is activated by cleavage and is detectable during ER stress, is also involved in embolic cerebral infarctions in rats, we adopted an autologous blood clot model for the analysis of cerebral infarctions. We performed experiments in rats with brain infarctions, which are closely related to embolic cerebral infarctions. We utilized a homologous blood clot, i.e., natural materials, to form the infarct area. Our findings reveal that caspase-12 is fragmented when infarct areas form in cerebral cortical neurons. Interestingly, we observed that these fragments translocated to the nuclei of not only cerebral cortical neurons but hippocampal neurons. We further found that glucose-regulated protein 78 (GRP78), a marker of ER stress, is up-regulated in both cerebral cortical and hippocampal neurons during cerebral infarction. This result suggests that the fragmentation of caspase-12 and the subsequent nuclear translocation of these fragments are involved in the brain infarction process in rats.

Keywords

Caspase-12 Endoplasmic reticulum stress Translocation Nucleus Cerebral infarction Apoptosis 

Abbreviations

ER

Endoplasmic reticulum

GRP78

Glucose-regulated protein 78

Bcl-2

B cell/lymphoma-2

MCAO

Middle cerebral artery occlusion

HE

Hematoxylin and eosin

TUNEL

Terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end labeling

UPR

Unfolded protein response

PBS

Phosphate-buffered saline

Notes

Acknowledgments

This study was supported by grants-in-aid for scientific research (KAKENHI 21570152) and the “Strategic Project to Support the Formation of Research Bases at Private Universities (SENRYAKU)” (2008–2012) from MEXT (Ministry of Education, Culture, Sports, Science and Technology of Japan). This work was also supported by the Kansai University Special Research Fund, 2009.

References

  1. Back SH, Schroder M, Lee K, Zhang K, Kaufman RJ (2005) ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35:395–416PubMedCrossRefGoogle Scholar
  2. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332PubMedCrossRefGoogle Scholar
  3. DeGracia DJ, Montie HL (2004) Cerebral ischemia and the unfolded protein response. J Neurochem 91:1–8PubMedCrossRefGoogle Scholar
  4. Di Sano F, Ferraro E, Tufi R, Achsel T, Piacentini M, Cecconi F (2006) Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 281:2693–2700PubMedCrossRefGoogle Scholar
  5. Feng Y, Kudo M, Shimoke K, Ikeuchi T, Ebihara Y, Takasaki M (2002) Suppression of angiogenesis causes a significant delay of repair process in rat thromboembolic cerebral infarction. J Tokyo Med Univ 60:489–500Google Scholar
  6. Fujita E, Kouroku Y, Jimbo A, Isoai A, Maruyama K, Momoi T (2002) Caspase-12 processing and fragment translocation into nuclei of tunicamycin-treated cells. Cell Death Differ 9:1108–1114PubMedCrossRefGoogle Scholar
  7. Imaizumi K, Miyoshi K, Katayama T, Yoneda T, Taniguchi M, Kudo T, Tohyama M (2001) The unfolded protein response and Alzheimer’s disease. Biochim Biophys Acta 1536:85–96PubMedGoogle Scholar
  8. Ito D, Tanaka K, Suzuki S, Dembo T, Kosakai A, Fukuuchi Y (2001) Up-regulation of the Ire1-mediated signaling molecule, Bip, in ischemic rat brain. Neuroreport 12:4023–4028PubMedCrossRefGoogle Scholar
  9. Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A, Declercq W, Vandenabeele P (2003) Regulation of the expression and processing of caspase-12. J Cell Biol 162:457–467PubMedCrossRefGoogle Scholar
  10. Kishi S, Shimoke K, Nakatani Y, Shimada T, Okumura N, Nagai K, Shin-Ya K, Ikeuchi T (2010) Nerve growth factor attenuates 2-deoxy-d-glucose-triggered endoplasmic reticulum stress-mediated apoptosis via enhanced expression of GRP78. Neurosci Res 66:14–21PubMedCrossRefGoogle Scholar
  11. Kudo M, Aoyama A, Ichimori S, Fukunaga N (1982) An animal model of cerebral infarction. Homologous blood clot emboli in rats. Stroke 13:505–508PubMedGoogle Scholar
  12. Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35:373–381PubMedCrossRefGoogle Scholar
  13. Morimoto N, Oida Y, Shimazawa M, Miura M, Kudo T, Imaizumi K, Hara H (2007) Involvement of endoplasmic reticulum stress after middle cerebral artery occlusion in mice. Neuroscience 147:957–967PubMedCrossRefGoogle Scholar
  14. Murakami Y, Aizu-Yokota E, Sonoda Y, Ohta S, Kasahara T (2007) Suppression of endoplasmic reticulum stress-induced caspase activation and cell death by the overexpression of Bcl-xL or Bcl-2. J Biochem 141:401–410PubMedCrossRefGoogle Scholar
  15. Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–894PubMedCrossRefGoogle Scholar
  16. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103PubMedCrossRefGoogle Scholar
  17. Nakano T, Watanabe H, Ozeki M, Asai M, Katoh H, Satoh H, Hayashi H (2006) Endoplasmic reticulum Ca2+ depletion induces endothelial cell apoptosis independently of caspase-12. Cardiovasc Res 69:908–915PubMedCrossRefGoogle Scholar
  18. Obeng EA, Boise LH (2005) Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem 280:29578–29587PubMedCrossRefGoogle Scholar
  19. Paschen W, Aufenberg C, Hotop S, Mengesdorf T (2003) Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. J Cereb Blood Flow Metab 23:449–461PubMedCrossRefGoogle Scholar
  20. Pennington R, Gatenbee C, Kennedy B, Harpending H, Cochran G (2009) Group differences in proneness to inflammation. Infect Genet Evol 9:1371–1380PubMedCrossRefGoogle Scholar
  21. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122–128PubMedGoogle Scholar
  22. Rojas-Rivera D, Caballero B, Zamorano S, Lisbona F, Hetz C (2010) Alternative functions of the BCL-2 protein family at the endoplasmic reticulum. Adv Exp Med Biol 687:33–47PubMedCrossRefGoogle Scholar
  23. Ruiz-Vela A, Opferman JT, Cheng EH, Korsmeyer SJ (2005) Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep 6:379–385PubMedCrossRefGoogle Scholar
  24. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63PubMedGoogle Scholar
  25. Shen X, Zhang K, Kaufman RJ (2004) The unfolded protein response–a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 28:79–92PubMedGoogle Scholar
  26. Shibata M, Hattori H, Sasaki T, Gotoh J, Hamada J, Fukuuchi Y (2003) Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice. Neuroscience 118:491–499PubMedCrossRefGoogle Scholar
  27. Shimoke K, Amano H, Kishi S, Uchida H, Kudo M, Ikeuchi T (2004a) Nerve growth factor attenuates endoplasmic reticulum stress-mediated apoptosis via suppression of caspase-12 activity. J Biochem 135:439–446PubMedCrossRefGoogle Scholar
  28. Shimoke K, Utsumi T, Kishi S, Nishimura M, Sasaya H, Kudo M, Ikeuchi T (2004b) Prevention of endoplasmic reticulum stress-induced cell death by brain-derived neurotrophic factor in cultured cerebral cortical neurons. Brain Res 1028:105–111PubMedCrossRefGoogle Scholar
  29. Shimoke K, Kishi S, Utsumi T, Shimamura Y, Sasaya H, Oikawa T, Uesato S, Ikeuchi T (2005) NGF-induced phosphatidylinositol 3-kinase signaling pathway prevents thapsigargin-triggered ER stress-mediated apoptosis in PC12 cells. Neurosci Lett 389:124–128PubMedCrossRefGoogle Scholar
  30. Urano F, Bertolotti A, Ron D (2000) IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 113(Pt 21):3697–3702PubMedGoogle Scholar
  31. Wootz H, Hansson I, Korhonen L, Napankangas U, Lindholm D (2004) Caspase-12 cleavage and increased oxidative stress during motoneuron degeneration in transgenic mouse model of ALS. Biochem Biophys Res Commun 322:281–286PubMedCrossRefGoogle Scholar
  32. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891PubMedCrossRefGoogle Scholar
  33. Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Koji Shimoke
    • 1
  • Yoshinori Matsuki
    • 2
    • 3
  • Kenji Fukunaga
    • 4
  • Yoshinobu Matsumura
    • 4
  • Eriko Fujita
    • 5
  • Kensuke Sugihara
    • 1
  • Masamichi Nobuhara
    • 1
  • Hiroki Maruoka
    • 1
    • 6
  • Toshihiko Ikeuchi
    • 1
  • Motoshige Kudo
    • 2
  1. 1.Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and BioengineeringKansai UniversitySuitaJapan
  2. 2.Department of PathologyTokyo Medical UniversityTokyoJapan
  3. 3.Department of PathologyMitsui Memorial HospitalTokyoJapan
  4. 4.Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and BioengineeringKansai UniversitySuitaJapan
  5. 5.Division of Differentiation and Development, Department of Inherited Metabolic DisordersNational Institute of Neuroscience, NCNPTokyoJapan
  6. 6.Technology Research Laboratory, KURABONeyagawaJapan

Personalised recommendations