Skip to main content

Advertisement

Log in

Regional Changes in Gene Expression after Limbic Kindling

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Repeated electrical stimulation results in development of seizures and a permanent increase in seizure susceptibility (kindling). The permanence of kindling suggests that chronic changes in gene expression are involved. Kindling at different sites produces specific effects on interictal behaviors such as spatial cognition and anxiety, suggesting that causal changes in gene expression might be restricted to the stimulated site. We employed focused microarray analysis to characterize changes in gene expression associated with amygdaloid and hippocampal kindling. Male Long-Evans rats received 1 s trains of electrical stimulation to either the amygdala or hippocampus once daily until five generalized seizures had been kindled. Yoked control rats carried electrodes but were not stimulated. Rats were euthanized 14 days after the last seizures, both amygdala and hippocampus dissected, and transcriptome profiles compared. Of the 1,200 rat brain-associated genes evaluated, 39 genes exhibited statistically significant expression differences between the kindled and non-kindled amygdala and 106 genes exhibited statistically significant differences between the kindled and non-kindled hippocampus. In the amygdala, subsequent ontological analyses using the GOMiner algorithm demonstrated significant enrichment in categories related to cytoskeletal reorganization and cation transport, as well as in gene families related to synaptic transmission and neurogenesis. In the hippocampus, significant enrichment in gene expression within categories related to cytoskeletal reorganization and cation transport was similarly observed. Furthermore, unique to the hippocampus, enrichment in transcription factor activity and GTPase-mediated signal transduction was identified. Overall, these data identify specific and unique neurochemical pathways chronically altered following kindling in the two sites, and provide a platform for defining the molecular basis for the differential behaviors observed in the interictal period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe K (2001) Modulation of hippocampal long-term potentiation by the amygdala: a synaptic mechanism linking emotion and memory. Jpn J Pharmacol 86:18–22

    Article  PubMed  CAS  Google Scholar 

  • Barton ME, White HS (2004) The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on kindling acquisition and expression. Epilepsy Res 59:1–12

    Article  PubMed  CAS  Google Scholar 

  • Behr J, Heinemann U, Mody I (2001) Kindling induces transient NMDA receptor-mediated facilitation of high-frequency input in the rat dentate gyrus. J Neurophysiol 85:2195–2202

    PubMed  CAS  Google Scholar 

  • Beldhuis HJ, Everts HG, Van der Zee EA, Luiten PG, Bohus B (1992) Amygdala kindling-induced seizures selectively impair spatial memory. 1. Behavioral characteristics and effects on hippocampal neuronal protein kinase C isoforms. Hippocampus 2:397–409

    Article  PubMed  CAS  Google Scholar 

  • Bronzino JD, Austin-LaFrance RJ, Morgane PJ, Galler JR (1991a) Effects of prenatal protein malnutrition on kindling-induced alterations in dentate granule cell excitability. I. Synaptic transmission measures. Exp Neurol 112:206–215

    Article  PubMed  CAS  Google Scholar 

  • Bronzino JD, Austin-LaFrance RJ, Morgane PJ, Galler JR (1991b) Effects of prenatal protein malnutrition on kindling-induced alterations in dentate granule cell excitability. II. Paired-pulse measures. Exp Neurol 112:216–223

    Article  PubMed  CAS  Google Scholar 

  • Burgdorf J, Zhang XL, Weiss C, Matthews E, Disterhoft JF, Stanton PK, Moskal JR (2009) The N-methyl-d-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats. Neurobiol Aging

  • Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comput Neurol 324:180–194

    Article  CAS  Google Scholar 

  • Chen Q, He S, Hu XL, Yu J, Zhou Y, Zheng J, Zhang S, Zhang C, Duan WH, Xiong ZQ (2007) Differential roles of NR2A- and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis. J Neurosci 27:542–552

    Article  PubMed  CAS  Google Scholar 

  • Colino A, Fernandez de Molina A (1986a) Electrical activity generated in subicular and entorhinal cortices after electrical stimulation of the lateral and basolateral amygdala of the rat. Neuroscience 19:573–580

    Article  PubMed  CAS  Google Scholar 

  • Colino A, Fernandez de Molina A (1986b) Inhibitory response in entorhinal and subicular cortices after electrical stimulation of the lateral and basolateral amygdala of the rat. Brain Res 378:416–419

    Article  PubMed  CAS  Google Scholar 

  • Corcoran ME, Moshé SL (eds) (1998) Kindling five. Plenum, New York

    Google Scholar 

  • Corcoran ME, Moshé SL (eds) (2005) Kindling six. Springer, New York

    Google Scholar 

  • Corcoran ME, Teskey CG (2009) Characteristics and mechanisms of kindling. In: Schwartzkroin P (ed) Encyclopedia of basic epilepsy research, vol 2. Elsevier, Amsterdam, pp 741–746

    Chapter  Google Scholar 

  • Ding YX, Zhang Y, He B, Yue WH, Zhang D, Zou LP (2010) A possible association of responsiveness to adrenocorticotropic hormone with specific GRIN1 haplotypes in infantile spasms. Dev Med Child Neurol 52:1028–1032

    Article  PubMed  Google Scholar 

  • Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I, Milh M, Kortum F, Fritsch A, Pientka FK, Hellenbroich Y, Kalscheuer VM, Kohlhase J, Moog U, Rappold G, Rauch A, Ropers HH, von Spiczak S, Tonnies H, Villeneuve N, Villard L, Zabel B, Zenker M, Laube B, Reis A, Wieczorek D, Van Maldergem L, Kutsche K (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 42:1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Geinisman Y, Morrell F, de Toledo-Morrell L (1988) Remodeling of synaptic architecture during hippocampal “kindling”. Proc Natl Acad Sci USA 85:3260–3264

    Article  PubMed  CAS  Google Scholar 

  • Geula C, Jarvie PA, Logan TC, Slevin JT (1988) Long-term enhancement of K+-evoked release of l-glutamate in entorhinal kindled rats. Brain Res 442:368–372

    Article  PubMed  CAS  Google Scholar 

  • Goddard GV, Douglas RM (1976) Does the engram of kindling model the engram of normal long term memory? In: Wada JA (ed) Kindling. Raven, New York, p 18

    Google Scholar 

  • Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330

    Article  PubMed  CAS  Google Scholar 

  • Gorter JA, van Vliet EA, Aronica E, Breit T, Rauwerda H, Lopes da Silva FH, Wadman WJ (2006) Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci 26:11083–11110

    Article  PubMed  CAS  Google Scholar 

  • Hannesson DK, Corcoran ME (2000) The mnemonic effects of kindling. Neurosci Biobehav Rev 24:725–751

    Article  PubMed  CAS  Google Scholar 

  • Hannesson DK, Howland J, Pollock M, Mohapel P, Wallace AE, Corcoran ME (2001) Dorsal hippocampal kindling produces a selective and enduring disruption of hippocampally mediated behavior. J Neurosci 21:4443–4450

    PubMed  CAS  Google Scholar 

  • Hannesson DK, Howland JG, Pollock M, Mohapel P, Wallace AE, Corcoran ME (2005) Anterior perirhinal cortex kindling produces long-lasting effects on anxiety and object recognition memory. Eur J Neurosci 21:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Hannesson DK, Pollock MS, Howland JG, Mohapel P, Wallace AE, Corcoran ME (2008) Amygdaloid kindling is anxiogenic but fails to alter object recognition or spatial working memory in rats. Epilepsy Behav 13:52–61

    Article  PubMed  CAS  Google Scholar 

  • Heffner TG, Hartman JA, Seiden LS (1980) A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav 13:453–456

    Article  PubMed  CAS  Google Scholar 

  • Henry LC, Goertzen CD, Lee A, Teskey GC (2008) Repeated seizures lead to altered skilled behaviour and are associated with more highly efficacious excitatory synapses. Eur J Neurosci 27:2165–2176

    Article  PubMed  Google Scholar 

  • Holmes KH, Bilkey DK, Laverty R, Goddard GV (1990) The N-methyl-d-aspartate antagonists aminophosphonovalerate and carboxypiperazinephosphonate retard the development and expression of kindled seizures. Brain Res 506:227–235

    Article  PubMed  CAS  Google Scholar 

  • Jarvie PA, Logan TC, Geula C, Slevin JT (1990) Entorhinal kindling permanently enhances Ca2(+)-dependent l-glutamate release in regio inferior of rat hippocampus. Brain Res 508:188–193

    Article  PubMed  CAS  Google Scholar 

  • Kalynchuk LE, Pinel JP, Treit D (1998) Long-term kindling and interictal emotionality in rats: effect of stimulation site. Brain Res 779:149–157

    Article  PubMed  CAS  Google Scholar 

  • Kamphuis W, Lopes da Silva FH, Wadman WJ (1988) Changes in local evoked potentials in the rat hippocampus (CA1) during kindling epileptogenesis. Brain Res 440:205–215

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Krettek JE, Price JL (1974) Projections from the amygdala to the perirhinal and entorhinal cortices and the subiculum. Brain Res 71:150–154

    Article  PubMed  CAS  Google Scholar 

  • Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comput Neurol 172:687–722

    Article  CAS  Google Scholar 

  • Kroes RA, Panksepp J, Burgdorf J, Otto NJ, Moskal JR (2006) Modeling depression: social dominance-submission gene expression patterns in rat neocortex. Neuroscience 137:37–49

    Article  PubMed  CAS  Google Scholar 

  • Kroes RA, Burgdorf J, Otto NJ, Panksepp J, Moskal JR (2007) Social defeat, a paradigm of depression in rats that elicits 22-kHz vocalizations, preferentially activates the cholinergic signaling pathway in the periaqueductal gray. Behav Brain Res 182:290–300

    Article  PubMed  CAS  Google Scholar 

  • Lehmann H, Ebert U, Loscher W (1998) Amygdala-kindling induces a lasting reduction of GABA-immunoreactive neurons in a discrete area of the ipsilateral piriform cortex. Synapse 29:299–309

    Article  PubMed  CAS  Google Scholar 

  • Leung LS, Boon KA, Kaibara T, Innis NK (1990) Radial maze performance following hippocampal kindling. Behav Brain Res 40:119–129

    Article  PubMed  CAS  Google Scholar 

  • Lieberman DN, Mody I (1998) Substance P enhances NMDA channel function in hippocampal dentate gyrus granule cells. J Neurophysiol 80:113–119

    PubMed  CAS  Google Scholar 

  • Loscher W, Schwark WS (1987) Further evidence for abnormal GABAergic circuits in amygdala-kindled rats. Brain Res 420:385–390

    Article  PubMed  CAS  Google Scholar 

  • Lukasiuk K, Kontula L, Pitkanen A (2003) cDNA profiling of epileptogenesis in the rat brain. Eur J Neurosci 17:271–279

    Article  PubMed  Google Scholar 

  • Maren S, Fanselow MS (1995) Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J Neurosci 15:7548–7564

    PubMed  CAS  Google Scholar 

  • Mody I, Heinemann U (1987) NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling. Nature 326:701–704

    Article  PubMed  CAS  Google Scholar 

  • Perez-Otano I, Ehlers MD (2005) Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 28:229–238

    Article  PubMed  CAS  Google Scholar 

  • Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkanen A (1999) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comput Neurol 403:229–260

    Article  CAS  Google Scholar 

  • Racine RJ (1972a) Modification of seizure activity by electrical stimulation. I. After-discharge threshold. Electroencephalogr Clin Neurophysiol 32:269–279

    Article  PubMed  CAS  Google Scholar 

  • Racine RJ (1972b) Modification of seizure activity by electrical stimulation, II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  PubMed  CAS  Google Scholar 

  • Racine R, Okujava V, Chipashvili S (1972) Modification of seizure activity by electrical stimulation. 3. Mechanisms. Electroencephalogr Clin Neurophysiol 32:295–299

    Article  PubMed  CAS  Google Scholar 

  • Racine RJ, Burnham WM, Gilbert M, Kairiss EW (1986) Kindling mechanisms: I. Electrophysiological studies. In: Wada JA (ed) Kindling three. Raven, New York, pp 263–279

    Google Scholar 

  • Routtenberg A, Rekart JL (2005) Post-translational protein modification as the substrate for long-lasting memory. Trends Neurosci 28:12–19

    Article  PubMed  CAS  Google Scholar 

  • Schinnick-Gallagher P, Bradley Keele N (1998) Long-lasting changes in the pharmacology and electrophysiology of amino acid receptors in amygdala kindled neurons. In: Corcoran ME, Moshé SL (eds) Kindling five. Plenum, New York, pp 75–87

    Google Scholar 

  • Shao LR, Dudek FE (2005) Detection of increased local excitatory circuits in the hippocampus during epileptogenesis using focal flash photolysis of caged glutamate. Epilepsia 46(5):100–106

    Article  PubMed  CAS  Google Scholar 

  • Sloviter RS, Zappone CA, Harvey BD, Frotscher M (2006) Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: possible anatomical substrate of granule cell hyper-inhibition in chronically epileptic rats. J Comput Neurol 494:944–960

    Article  Google Scholar 

  • Sutula T, Zhang P, Lynch M, Sayin U, Golarai G, Rod R (1998) Synaptic and axonal remodeling of mossy fibers in the hilus and supragranular region of the dentate gyrus in kainate-treated rats. J Comput Neurol 390:578–594

    Article  CAS  Google Scholar 

  • Teskey GC, Monfils MH, Silasi G, Kolb B (2006) Neocortical kindling is associated with opposing alterations in dendritic morphology in neocortical layer V and striatum from neocortical layer III. Synapse 59:1–9

    Article  PubMed  CAS  Google Scholar 

  • Tuff LP, Racine RJ, Adamec R (1983a) The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired-pulse depression. Brain Res 277:79–90

    Article  PubMed  CAS  Google Scholar 

  • Tuff LP, Racine RJ, Mishra RK (1983b) The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. II. Receptor binding. Brain Res 277:91–98

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O, Schulze K, Albrecht D (2004) Amygdala-kindling induces alterations in neuronal density and in density of degenerated fibers. Hippocampus 14:311–318

    Article  Google Scholar 

  • Wada JA, Sato M, Corcoran ME (1974) Persistent seizure susceptibility and recurrent spontaneous seizures in kindled cats. Epilepsia 15:465–478

    Article  PubMed  CAS  Google Scholar 

  • Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081–1094

    Article  PubMed  CAS  Google Scholar 

  • Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28

    Article  PubMed  Google Scholar 

  • Zhang XL, Sullivan JA, Moskal JR, Stanton PK (2008) A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus. Neuropharmacology 55:1238–1250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council (to MEC) and The Falk Foundation, Chicago, IL, (to JRM). We thank Joanne Sitarski, Ken Wolfe, Nigel Otto, and Mary Schmidt for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Moskal.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corcoran, M.E., Kroes, R.A., Burgdorf, J.S. et al. Regional Changes in Gene Expression after Limbic Kindling. Cell Mol Neurobiol 31, 819–834 (2011). https://doi.org/10.1007/s10571-011-9672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9672-7

Keywords

Navigation