Advertisement

Cellular and Molecular Neurobiology

, Volume 31, Issue 4, pp 619–627 | Cite as

Effects of Estradiol and IGF-1 on the Sodium Calcium Exchanger in Rat Cultured Cortical Neurons

  • Julio C. Sánchez
  • Diego F. López-Zapata
  • Liliana Francis
  • Lina De Los Reyes
Original Research

Abstract

The Na+/Ca2+ exchanger (NCX) is an important bidirectional transporter of calcium in neurons and has been shown to be involved in neuroprotection. Calcium can activate a number of cascades that can result in apoptosis and cell death, and NCX is a key factor in regulating the cytoplasmic concentration of this ion. 17-β-estradiol and insulin-like growth factor 1 (IGF-1) are known neuroprotective hormones with interacting mechanisms and effects on intracellular calcium; however, their relationship with the NCX has not been explored. In this article, the effects of these two hormones on neuronal NCX were tested using the whole-cell patch clamp technique on rat primary culture neurons. Both 17-β-estradiol and IGF-1 produced an increase in the NCX-mediated inward current and a decrease in the NCX-mediated outward current. However, the IGF-1 effect was lower than that of 17-β-estradiol, and the effect of both agents together was greater than the sum of each agent alone. Neither of the agents affected the pattern of regulation by extracellular or intrapipette calcium. Inhibitors of the IGF-1 and 17-β-estradiol receptors and inhibitors of the main signaling pathways failed to change the observed effects, indicating that these actions were not mediated by the classical receptors of these hormones. These effects on the NCX could be a mechanism explaining the neuroprotective actions of 17-β-estradiol and IGF-1, and these findings could help researchers to understand the role of the NCX in neuroprotection.

Keywords

NCX Estradiol IGF-I Electrophysiology Neuroprotection 

Notes

Acknowledgments

We thank to the Red de Universidades Públicas del Eje Cafetero Alma Máter and Colciencias for financial support.

Supplementary material

10571_2011_9657_MOESM1_ESM.tif (1.1 mb)
Supplementary material 1 (TIFF 1154 kb)

References

  1. Amantea D, Russo R, Bagetta G, Corasaniti MT (2005) From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens. Pharmacol Res 52:119–132PubMedCrossRefGoogle Scholar
  2. Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagnani S, Di Renzo G, Annunziato L (2000) Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+–Ca2+ exchanger in C6 glioma cells. J Neurochem 74:1505–1513PubMedCrossRefGoogle Scholar
  3. Anderson SE, Kirkland DM, Beyschau A, Cala PM (2005) Acute effects of 17beta-estradiol on myocardial pH, Na+, and Ca2+ and ischemia-reperfusion injury. Am J Physiol Cell Physiol 288:C57–C64PubMedGoogle Scholar
  4. Andreeva N, Khodorov B, Stelmashook E, Cragoe E Jr, Victorov I (1991) Inhibition of Na+/Ca2+ exchange enhances delayed neuronal death elicited by glutamate in cerebellar granule cell cultures. Brain Res 548:322–325PubMedCrossRefGoogle Scholar
  5. Annunziato L, Pignataro G, Di Renzo GF (2004) Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev 56:633–654PubMedCrossRefGoogle Scholar
  6. Aperghis M, Johnson IP, Cannon J, Yang SY, Goldspink G (2004) Different levels of neuroprotection by two insulin-like growth factor-I splice variants. Brain Res 1009:213–218PubMedCrossRefGoogle Scholar
  7. Araujo IM, Carreira BP, Pereira T, Santos PF, Soulet D, Inacio A, Bahr BA, Carvalho AP, Ambrosio AF, Carvalho CM (2007) Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons. Cell Death Differ 14:1635–1646PubMedCrossRefGoogle Scholar
  8. Azcoitia I, Sierra A, Garcia-Segura LM (1999) Neuroprotective effects of estradiol in the adult rat hippocampus: interaction with insulin-like growth factor-I signalling. J Neurosci Res 58:815–822PubMedCrossRefGoogle Scholar
  9. Ba F, Pang PK, Davidge ST, Benishin CG (2004) The neuroprotective effects of estrogen in SK-N-SH neuroblastoma cell cultures. Neurochem Int 44:401–411PubMedCrossRefGoogle Scholar
  10. Bains M, Cousins JC, Roberts JL (2007) Neuroprotection by estrogen against MPP+-induced dopamine neuron death is mediated by ERalpha in primary cultures of mouse mesencephalon. Exp Neurol 204:767–776PubMedCrossRefGoogle Scholar
  11. Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285PubMedCrossRefGoogle Scholar
  12. Behl C (2002a) Estrogen can protect neurons: modes of action. J Steroid Biochem Mol Biol 83:195–197PubMedCrossRefGoogle Scholar
  13. Behl C (2002b) Oestrogen as a neuroprotective hormone. Nat Rev Neurosci 3:433–442PubMedGoogle Scholar
  14. Bence-Hanulec KK, Marshall J, Blair LA (2000) Potentiation of neuronal L calcium channels by IGF-1 requires phosphorylation of the alpha1 subunit on a specific tyrosine residue. Neuron 27:121–131PubMedCrossRefGoogle Scholar
  15. Bers DM, Weber CR (2002) Na/Ca exchange function in intact ventricular myocytes. Ann N Y Acad Sci 976:500–512PubMedCrossRefGoogle Scholar
  16. Beuckelmann DJ, Wier WG (1989) Sodium-calcium exchange in guinea-pig cardiac cells: exchange current and changes in intracellular Ca2+. J Physiol 414:499–520PubMedGoogle Scholar
  17. Blair LA, Marshall J (1997) IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19:421–429PubMedCrossRefGoogle Scholar
  18. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854PubMedGoogle Scholar
  19. Bondy CA, Cheng CM (2004) Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 490:25–31PubMedCrossRefGoogle Scholar
  20. Brann DW, Dhandapani K, Wakade C, Mahesh VB, Khan MM (2007) Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72:381–405PubMedCrossRefGoogle Scholar
  21. Brywe KG, Mallard C, Gustavsson M, Hedtjarn M, Leverin AL, Wang X, Blomgren K, Isgaard J, Hagberg H (2005) IGF-I neuroprotection in the immature brain after hypoxia-ischemia, involvement of Akt and GSK3beta? Eur J Neurosci 21:1489–1502PubMedCrossRefGoogle Scholar
  22. Busa W (1996) Regulation of intracellular free calcium. In: Shultz S, Andreoli T, Brown A, Frambrough D, Hoffman J, Welsh M (eds) Molecular biology of membrane transport disorders. Plenum Press, New York, pp 427–446Google Scholar
  23. Cardona-Gomez GP, Mendez P, Garcia-Segura LM (2002) Synergistic interaction of estradiol and insulin-like growth factor-I in the activation of PI3 K/Akt signaling in the adult rat hypothalamus. Brain Res Mol Brain Res 107:80–88PubMedCrossRefGoogle Scholar
  24. Carro E, Trejo JL, Nunez A, Torres-Aleman I (2003) Brain repair and neuroprotection by serum insulin-like growth factor I. Mol Neurobiol 27:153–162PubMedCrossRefGoogle Scholar
  25. Condrescu M, Opuni K, Hantash BM, Reeves JP (2002) Cellular regulation of sodium-calcium exchange. Ann N Y Acad Sci 976:214–223PubMedCrossRefGoogle Scholar
  26. Czyz A, Kiedrowski L (2002) In depolarized and glucose-deprived neurons, Na+ influx reverses plasmalemmal K+-dependent and K+-independent Na+/Ca2+ exchangers and contributes to NMDA excitotoxicity. J Neurochem 83:1321–1328PubMedCrossRefGoogle Scholar
  27. Diaz-Horta O, Van Eylen F, Herchuelz A (2003) Na/Ca exchanger overexpression induces endoplasmic reticulum stress, caspase-12 release, and apoptosis. Ann N Y Acad Sci 1010:430–432PubMedCrossRefGoogle Scholar
  28. DiPolo R, Beauge L (1987) Characterization of the reverse Na/Ca exchange in squid axons and its modulation by Cai and ATP. Cai-dependent Nai/Cao and Nai/Nao exchange modes. J Gen Physiol 90:505–525PubMedCrossRefGoogle Scholar
  29. DiPolo R, Beauge L (1990) Asymmetrical properties of the Na-Ca exchanger in voltage-clamped, internally dialyzed squid axons under symmetrical ionic conditions. J Gen Physiol 95:819–835PubMedCrossRefGoogle Scholar
  30. Ehara T, Matsuoka S, Noma A (1989) Measurement of reversal potential of Na+–Ca2+ exchange current in single guinea-pig ventricular cells. J Physiol 410:227–249PubMedGoogle Scholar
  31. Fernandez S, Fernandez AM, Lopez-Lopez C, Torres-Aleman I (2007) Emerging roles of insulin-like growth factor-I in the adult brain. Growth Horm IGF Res 17:89–95PubMedCrossRefGoogle Scholar
  32. Filardo EJ, Thomas P (2005) GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release. Trends Endocrinol Metab 16:362–367PubMedCrossRefGoogle Scholar
  33. Fink K, Meder WP, Clusmann H, Gothert M (2002) Ca2+ entry via P/Q-type Ca2+ channels and the Na+/Ca2+ exchanger in rat and human neocortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol 366:458–463PubMedCrossRefGoogle Scholar
  34. Gibney GT, Zhang JH, Douglas RM, Haddad GG, Xia Y (2002) Na(+)/Ca(2+) exchanger expression in the developing rat cortex. Neuroscience 112:65–73PubMedCrossRefGoogle Scholar
  35. Gonthier B, Nasarne C, Rudiger T (2005). Protocol for the primary culture of cortical neurons. In: Poindron P (ed) New methods for culturing cells from nervous tissue. Bio Valley Monographs, Karger, Basel, pp 12–22Google Scholar
  36. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100PubMedCrossRefGoogle Scholar
  37. Hilgemann DW, Collins A, Matsuoka S (1992) Steady-state and dynamic properties of cardiac sodium-calcium exchange. Secondary modulation by cytoplasmic calcium and ATP. J Gen Physiol 100:933–961PubMedCrossRefGoogle Scholar
  38. Hinata M, Yamamura H, Li L, Watanabe Y, Watano T, Imaizumi Y, Kimura J (2002) Stoichiometry of Na+–Ca2+ exchange is 3:1 in guinea-pig ventricular myocytes. J Physiol 545:453–461PubMedCrossRefGoogle Scholar
  39. Honda K, Shimohama S, Sawada H, Kihara T, Nakamizo T, Shibasaki H, Akaike A (2001) Nongenomic antiapoptotic signal transduction by estrogen in cultured cortical neurons. J Neurosci Res 64:466–475PubMedCrossRefGoogle Scholar
  40. Iwamoto T, Watano T, Shigekawa M (1996) A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 271:22391–22397PubMedCrossRefGoogle Scholar
  41. Jeffs GJ, Meloni BP, Bakker AJ, Knuckey NW (2007) The role of the Na(+)/Ca(2+) exchanger (NCX) in neurons following ischaemia. J Clin Neurosci 14:507–514PubMedCrossRefGoogle Scholar
  42. Jeffs GJ, Meloni BP, Sokolow S, Herchuelz A, Schurmans S, Knuckey NW (2008) NCX3 knockout mice exhibit increased hippocampal CA1 and CA2 neuronal damage compared to wild-type mice following global cerebral ischemia. Exp Neurol 210:268–273PubMedCrossRefGoogle Scholar
  43. Kang TM, Hilgemann DW (2004) Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature 427:544–548PubMedCrossRefGoogle Scholar
  44. Kimura J, Miyamae S, Noma A (1987) Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol 384:199–222PubMedGoogle Scholar
  45. Kimura J, Watanabe Y, Li L, Watano T (2002) Pharmacology of Na+/Ca2+ exchanger. Ann N Y Acad Sci 976:513–519PubMedCrossRefGoogle Scholar
  46. Matsuoka S, Hilgemann DW (1992) Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol 100:963–1001PubMedCrossRefGoogle Scholar
  47. Mendez P, Azcoitia I, Garcia-Segura LM (2005a) Interdependence of oestrogen and insulin-like growth factor-I in the brain: potential for analysing neuroprotective mechanisms. J Endocrinol 185:11–17PubMedCrossRefGoogle Scholar
  48. Mendez P, Cardona-Gomez GP, Garcia-Segura LM (2005b) Interactions of insulin-like growth factor-I and estrogen in the brain. Adv Exp Med Biol 567:285–303PubMedCrossRefGoogle Scholar
  49. Mendez P, Wandosell F, Garcia-Segura LM (2006) Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: cellular and molecular mechanisms. Front Neuroendocrinol 27:391–403PubMedCrossRefGoogle Scholar
  50. Micevych P, Dominguez R (2009) Membrane estradiol signaling in the brain. Front Neuroendocrinol 30:315–327PubMedCrossRefGoogle Scholar
  51. Minelli A, Castaldo P, Gobbi P, Salucci S, Magi S, Amoroso S (2007) Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41:221–234PubMedCrossRefGoogle Scholar
  52. Miura Y, Kimura J (1989) Sodium-calcium exchange current. Dependence on internal Ca and Na and competitive binding of external Na and Ca. J Gen Physiol 93:1129–1145PubMedCrossRefGoogle Scholar
  53. Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565PubMedGoogle Scholar
  54. Philipson KD, Nicoll DA (2000) Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol 62:111–133PubMedCrossRefGoogle Scholar
  55. Philipson KD, Nicoll DA, Ottolia M, Quednau BD, Reuter H, John S, Qiu Z (2002) The Na+/Ca2+ exchange molecule: an overview. Ann N Y Acad Sci 976:1–10PubMedCrossRefGoogle Scholar
  56. Pignataro G, Gala R, Cuomo O, Tortiglione A, Giaccio L, Castaldo P, Sirabella R, Matrone C, Canitano A, Amoroso S, Di Renzo G, Annunziato L (2004a) Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35:2566–2570PubMedCrossRefGoogle Scholar
  57. Pignataro G, Tortiglione A, Scorziello A, Giaccio L, Secondo A, Severino B, Santagada V, Caliendo G, Amoroso S, Di Renzo G, Annunziato L (2004b) Evidence for a protective role played by the Na+/Ca2+ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology 46:439–448PubMedCrossRefGoogle Scholar
  58. Quesada A, Micevych PE (2004) Estrogen interacts with the IGF-1 system to protect nigrostriatal dopamine and maintain motoric behavior after 6-hydroxdopamine lesions. J Neurosci Res 75:107–116PubMedCrossRefGoogle Scholar
  59. Sanchez JC, Powell T, Staines HM, Wilkins RJ (2006) Electrophysiological demonstration of Na+/Ca2+ exchange in bovine articular chondrocytes. Biorheology 43:83–94PubMedGoogle Scholar
  60. Sanchez JC, Lopez-Zapata DF, Romero-Leguizamon CR (2010) Calcium transport mechanisms in neuroprotection and neurotoxicity. Rev Neurol 51:624–632PubMedGoogle Scholar
  61. Segars JH, Driggers PH (2002) Estrogen action and cytoplasmic signaling cascades. Part I: membrane-associated signaling complexes. Trends Endocrinol Metab 13:349–354PubMedCrossRefGoogle Scholar
  62. Shono Y, Kamouchi M, Kitazono T, Kuroda J, Nakamura K, Hagiwara N, Ooboshi H, Ibayashi S, Iida M (2010) Change in intracellular pH causes the toxic Ca2+ entry via NCX1 in neuron- and glia-derived cells. Cell Mol Neurobiol 30:453–460PubMedCrossRefGoogle Scholar
  63. Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 388:507–525PubMedCrossRefGoogle Scholar
  64. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129PubMedCrossRefGoogle Scholar
  65. Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179PubMedCrossRefGoogle Scholar
  66. Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146:624–632PubMedCrossRefGoogle Scholar
  67. Torok TL (2007) Electrogenic Na+/Ca2+-exchange of nerve and muscle cells. Prog Neurobiol 82:287–347PubMedCrossRefGoogle Scholar
  68. Tortiglione A, Pignataro G, Minale M, Secondo A, Scorziello A, Di Renzo GF, Amoroso S, Caliendo G, Santagada V, Annunziato L (2002) Na+/Ca2+ exchanger in Na+ efflux-Ca2+ influx mode of operation exerts a neuroprotective role in cellular models of in vitro anoxia and in vivo cerebral ischemia. Ann N Y Acad Sci 976:408–412PubMedCrossRefGoogle Scholar
  69. Ullrich ND, Koschak A, MacLeod KT (2007) Oestrogen directly inhibits the cardiovascular L-type Ca2+ channel Cav1.2. Biochem Biophys Res Commun 361:522–527PubMedCrossRefGoogle Scholar
  70. Vasudevan N, Pfaff DW (2008) Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 29:238–257PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Julio C. Sánchez
    • 1
  • Diego F. López-Zapata
    • 1
  • Liliana Francis
    • 2
  • Lina De Los Reyes
    • 2
  1. 1.Grupo de Fisiología Celular y Aplicada, Facultad Ciencias de la SaludUniversidad Tecnológica de PereiraPereiraColombia
  2. 2.Grupo de Modelos Experimentales para las Ciencias Zoohumanas, Facultad de CienciasUniversidad del TolimaIbaguéColombia

Personalised recommendations