Cellular and Molecular Neurobiology

, Volume 30, Issue 8, pp 1321–1326 | Cite as

The t-SNARE Complex: A Close Up

  • Alison R. Dun
  • Colin Rickman
  • Rory R. Duncan


The SNARE proteins, syntaxin, SNAP-25, and synaptobrevin have long been known to provide the driving force for vesicle fusion in the process of regulated exocytosis. Of particular interest is the initial interaction between SNAP-25 and syntaxin to form the t-SNARE heterodimer, an acceptor for subsequent synaptobrevin engagement. In vitro studies have revealed at least two different dynamic conformations of t-SNARE heterodimer defined by the degree of association of the C-terminal SNARE motif of SNAP-25 with syntaxin. At the plasma membrane, these proteins are organized into dense clusters of 50–60 nm in diameter. More recently, the t-SNARE interaction within these clusters was investigated in live cells at the molecular level, estimating each cluster to contain 35–70 t-SNARE molecules. This work reported the presence of both partially and fully zippered t-SNARE complex at the plasma membrane in agreement with the earlier in vitro findings. It also revealed a spatial segregation into distinct clusters containing predominantly one conformation apparently patterned by the surrounding lipid environment. The reason for this dynamic t-SNARE complex in exocytosis is uncertain; however, it does take us one step closer to understand the complex sequence of events leading to vesicle fusion, emphasizing the role of both membrane proteins and lipids.


Exocytosis SNAP-25 Syntaxin FLIM 



Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor


Synaptosome-associated protein of 25 kD


Fluorescence lifetime imaging microscopy


Stimulated emission depletion microscopy


Photoactivatable localisation microscopy



This work was supported by Wellcome Trust and Medical Research Council project grants to RRD and a BBSRC Studentship to AD.


  1. Altenbach K, Duncan RR, Valkonen M (2010) In vivo FLIM-FRET measurements of recombinant proteins in filamentous fungi. Fungal Biol Rev 23:67–71CrossRefGoogle Scholar
  2. An SJ, Almers W (2004) Tracking SNARE complex formation in live endocrine cells. Science 306:1042–1046CrossRefPubMedGoogle Scholar
  3. Arunachalam L, Han L, Tassew NG, He Y, Wang L, Xie L, Fujita Y, Kwan E, Davletov B, Monnier PP, Gaisano HY, Sugita S (2008) Munc18–1 is critical for plasma membrane localization of syntaxin1 but not of SNAP-25 in PC12 Cells. Mol Biol Cell 19:722–734CrossRefPubMedGoogle Scholar
  4. Avery J, Ellis DJ, Lang T, Holroyd P, Riedel D, Henderson RM, Edwardson JM, Jahn R (2000) A cell-free system for regulated exocytosis in PC12 cells. J Cell Biol 148:317–324CrossRefPubMedGoogle Scholar
  5. Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, HeidelbergCrossRefGoogle Scholar
  6. Chapman ER, An S, Barton N, Jahn R (1994) SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J Biol Chem 269:27427–27432PubMedGoogle Scholar
  7. Chen YA, Scales SJ, Scheller RH (2001) Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30:161–170CrossRefPubMedGoogle Scholar
  8. Clary DO, Griff IC, Rothman JE (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61:709–721CrossRefPubMedGoogle Scholar
  9. Crick F (1953) The packing of [alpha]-helices: simple coiled-coils. Acta Crystallogr A 6:689–697CrossRefGoogle Scholar
  10. de Wit H, Walter AM, Milosevic I, Gulyas-Kovacs A, Riedel D, Sorensen JB, Verhage M (2009) Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138:935–946CrossRefPubMedGoogle Scholar
  11. Fasshauer D, Margittai M (2004) A transient interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J Biol Chem 279:7613–7621CrossRefPubMedGoogle Scholar
  12. Fasshauer D, Bruns D, Shen B, Jahn R, Brunger AT (1997) A structural change occurs upon binding of syntaxin to SNAP-25. J Biol Chem 272:4582–4590CrossRefPubMedGoogle Scholar
  13. Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95:15781–15786CrossRefPubMedGoogle Scholar
  14. Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H.Freeman, San FranciscoGoogle Scholar
  15. Fiebig KM, Rice LM, Pollock E, Brunger AT (1999) Folding intermediates of SNARE complex assembly. Nat Struct Biol 6:117–123CrossRefPubMedGoogle Scholar
  16. Halemani ND, Bethani I, Rizzoli SO, Lang T (2010) Structure and dynamics of a two-helix SNARE complex in live cells. Traffic 11:394–404CrossRefPubMedGoogle Scholar
  17. Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE (1997) Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90:523–535CrossRefPubMedGoogle Scholar
  18. Hata Y, Slaughter CA, Sudhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347–351CrossRefPubMedGoogle Scholar
  19. Hayashi T, McMahon H, Yamasaki S, Binz T, Hata Y, Sudhof TC, Niemann H (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13:5051–5061PubMedGoogle Scholar
  20. Jahn R, Niemann H (1994) Molecular mechanisms of clostridial neurotoxins. Ann NY Acad Sci 733:245–255CrossRefPubMedGoogle Scholar
  21. James DJ, Kowalchyk J, Daily N, Petrie M, Martin TF (2009) CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions. Proc Natl Acad Sci USA 106:17308–17313CrossRefPubMedGoogle Scholar
  22. Laage R, Rohde J, Brosig B, Langosch D (2000) A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J Biol Chem 275:17481–17487CrossRefPubMedGoogle Scholar
  23. Lam AD, Tryoen-Toth P, Tsai B, Vitale N, Stuenkel EL (2008) SNARE-catalyzed fusion events are regulated by Syntaxin1A-lipid interactions. Mol Biol Cell 19:485–497CrossRefPubMedGoogle Scholar
  24. Lang T (2003) Imaging SNAREs at work in ‘unroofed’ cells–approaches that may be of general interest for functional studies on membrane proteins. Biochem Soc Trans 31:861–864CrossRefPubMedGoogle Scholar
  25. Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896CrossRefPubMedGoogle Scholar
  26. Lin RC, Scheller RH (1997) Structural organization of the synaptic exocytosis core complex. Neuron 19:1087–1094CrossRefPubMedGoogle Scholar
  27. Lopez I, Giner D, Ruiz-Nuno A, Fuentealba J, Viniegra S, Garcia AG, Davletov B, Gutierrez LM (2007) Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells. Cell Calcium 41:547–558CrossRefPubMedGoogle Scholar
  28. Medine CN, Rickman C, Chamberlain LH, Duncan RR (2007) Munc18–1 prevents the formation of ectopic SNARE complexes in living cells. J Cell Sci 120:4407–4415CrossRefPubMedGoogle Scholar
  29. Nofal S, Becherer U, Hof D, Matti U, Rettig J (2007) Primed vesicles can be distinguished from docked vesicles by analyzing their mobility. J Neurosci 27:1386–1395CrossRefPubMedGoogle Scholar
  30. Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052CrossRefPubMedGoogle Scholar
  31. Rickman C, Meunier FA, Binz T, Davletov B (2004) High affinity interaction of syntaxin and SNAP-25 on the plasma membrane is abolished by botulinum toxin E. J Biol Chem 279:644–651CrossRefPubMedGoogle Scholar
  32. Rickman C, Hu K, Carroll J, Davletov B (2005) Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem J 388:75–79CrossRefPubMedGoogle Scholar
  33. Rickman C, Medine CN, Dun AR, Moulton DJ, Mandula O, Halemani ND, Rizzoli SO, Chamberlain LH, Duncan RR (2010) t-SNARE protein conformations patterned by the lipid microenvironment. J Biol Chem 285:13535–13541CrossRefPubMedGoogle Scholar
  34. Rizo J, Sudhof TC (2002) Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3:641–653PubMedGoogle Scholar
  35. Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T (2006) The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys J 90:2843–2851CrossRefPubMedGoogle Scholar
  36. Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, Harke B, Donnert G, Rammner B, Eggeling C, Hell SW, Grubmuller H, Lang T (2007) Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317:1072–1076CrossRefPubMedGoogle Scholar
  37. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993a) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418CrossRefPubMedGoogle Scholar
  38. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993b) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324CrossRefPubMedGoogle Scholar
  39. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547CrossRefPubMedGoogle Scholar
  40. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353CrossRefPubMedGoogle Scholar
  41. Veit M, Sollner TH, Rothman JE (1996) Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett 385:119–123CrossRefPubMedGoogle Scholar
  42. Wang L, Bittner MA, Axelrod D, Holz RW (2008) The structural and functional implications of linked SNARE motifs in SNAP25. Mol Biol Cell 19:3944–3955CrossRefPubMedGoogle Scholar
  43. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNARE pins: minimal machinery for membrane fusion. Cell 92:759–772CrossRefPubMedGoogle Scholar
  44. Weninger K, Bowen ME, Choi UB, Chu S, Brunger AT (2008) Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure 16:308–320CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alison R. Dun
    • 1
  • Colin Rickman
    • 2
  • Rory R. Duncan
    • 1
  1. 1.Centre for Integrative PhysiologyUniversity of Edinburgh Medical SchoolEdinburghUK
  2. 2.School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations