Advertisement

Cellular and Molecular Neurobiology

, Volume 30, Issue 8, pp 1189–1195 | Cite as

Chromogranin A as a Crucial Factor in the Sorting of Peptide Hormones to Secretory Granules

  • Salah Elias
  • Charlène Delestre
  • Maite Courel
  • Youssef Anouar
  • Maite Montero-Hadjadje
Review Paper

Abstract

Chromogranin A (CgA) is a soluble glycoprotein stored along with hormones and neuropeptides in secretory granules of endocrine cells. In the last four decades, intense efforts have been concentrated to characterize the structure and the biological function of CgA. Besides, CgA has been widely used as a diagnostic marker for tumors of endocrine origin, essential hypertension, various inflammatory diseases, and neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer’s disease. CgA displays peculiar structural features, including numerous multibasic cleavage sites for prohormone convertases as well as a high proportion of acidic residues. Thus, it has been proposed that CgA represents a precursor of biologically active peptides, and a “granulogenic protein” that plays an important role as a chaperone for catecholamine storage in adrenal chromaffin cells. The widespread distribution of CgA throughout the neuroendocrine system prompted several groups to investigate the role of CgA in peptide hormone sorting to the regulated secretory pathway. This review summarizes the findings and theoretical concepts around the molecular machinery used by CgA to exert this putative intracellular function. Since CgA terminal regions exhibited strong sequence conservation through evolution, our work focused on the implication of these domains as potential functional determinants of CgA. Characterization of the molecular signals implicating CgA in the intracellular traffic of hormones represents a major biological issue that may contribute to unraveling the mechanisms defining the secretory competence of neuroendocrine cells.

Keywords

Granins Hormones Targeting Regulated secretion 

Notes

Acknowledgments

This work was supported by Inserm, the University of Rouen, the Conseil Régional de Haute-Normandie and Association pour la Recherche sur le Cancer.

References

  1. Arnaoutova I, Smith AM, Coates LC, Sharpe JC, Dhanvantari S, Snell CR, Birch NP, Loh YP (2003) The prohormone processing enzyme PC3 is a lipid raft-associated transmembrane protein. Biochemistry 42:10445–10455CrossRefPubMedGoogle Scholar
  2. Assadi M, Sharpe JC, Snell C, Loh YP (2004) The C-terminus of prohormone convertase 2 is sufficient and necessary for Raft association and sorting to the regulated secretory pathway. Biochemistry 43:7798–7807CrossRefPubMedGoogle Scholar
  3. Beuret N, Stettler H, Renold A, Rutishauser J, Spiess M (2004) Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. J Biol Chem 279:20242–20249CrossRefPubMedGoogle Scholar
  4. Blaschko H, Comline RS, Schneider FH, Silver M, Smith AD (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59CrossRefPubMedGoogle Scholar
  5. Brechler V, Chu WN, Baxter JD, Thibault G, Reudelhuber TL (1996) A protease processing site is essential for prorenin sorting to the regulated secretory pathway. J Biol Chem 271:20636–20640CrossRefPubMedGoogle Scholar
  6. Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-golgi network. J Cell Biol 115:1505–1519CrossRefPubMedGoogle Scholar
  7. Colombo B, Curnis F, Foglieni C, Monno A, Arrigoni G, Corti A (2002) Chromogranin A expression in neoplastic cells affects tumor growth and morphogenesis in mouse models. Cancer Res 62:941–946PubMedGoogle Scholar
  8. Cool DR, Loh YP (1998) Carboxypeptidase E is a sorting receptor for prohormones: binding and kinetic studies. Mol Cell Endocrinol 139:7–13CrossRefPubMedGoogle Scholar
  9. Courel M, Rodemer C, Nguyen ST, Pance A, Jackson AP, O’Connor DT, Taupenot L (2006) Secretory granule biogenesis in sympathoadrenal cells: identification of a granulogenic determinant in the secretory prohormone chromogranin A. J Biol Chem 281:38038–38051CrossRefPubMedGoogle Scholar
  10. Courel M, Vasquez MS, Hook VY, Mahata SK, Taupenot L (2008) Sorting of the neuroendocrine secretory protein Secretogranin II into the regulated secretory pathway: role of N- and C-terminal alpha-helical domains. J Biol Chem 283:11807–11822CrossRefPubMedGoogle Scholar
  11. Cowley DJ, Moore YR, Darling DS, Joyce PB, Gorr SU (2000) N- and C-terminal domains direct cell type-specific sorting of chromogranin A to secretory granules. J Biol Chem 275:7743–7748CrossRefPubMedGoogle Scholar
  12. Dannies PS (2001) Concentrating hormones into secretory granules: layers of control. Mol Cell Endocrinol 177:87–93CrossRefPubMedGoogle Scholar
  13. Dannies PS (2002) Mechanisms for storage of prolactin and growth hormone in secretory granules. Mol Genet Metab 76:6–13CrossRefPubMedGoogle Scholar
  14. Dhanvantari S, Loh YP (2000) Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J Biol Chem 275:29887–29893CrossRefPubMedGoogle Scholar
  15. Dhanvantari S, Arnaoutova I, Snell CR, Steinbach PJ, Hammond K, Caputo GA, London E, Loh YP (2002) Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry 41:52–60CrossRefPubMedGoogle Scholar
  16. Dikeakos JD, Reudelhuber TL (2007) Sending proteins to dense core secretory granules: still a lot to sort out. J Cell Biol 177:191–196CrossRefPubMedGoogle Scholar
  17. Dikeakos JD, Mercure C, Lacombe MJ, Seidah NG, Reudelhuber TL (2007) PC1/3, PC2 and PC5/6A are targeted to dense core secretory granules by a common mechanism. FEBS J 274:4094–4102CrossRefPubMedGoogle Scholar
  18. Dikeakos JD, Di Lello P, Lacombe MJ, Ghirlando R, Legault P, Reudelhuber TL, Omichinski JG (2009) Functional and structural characterization of a dense core secretory granule sorting domain from the PC1/3 protease. Proc Natl Acad Sci USA 106:7408–7413CrossRefPubMedGoogle Scholar
  19. Doblinger A, Becker A, Seidah NG, Laslop A (2003) Proteolytic processing of chromogranin A by the prohormone convertase PC2. Regul Pept 111:111–116CrossRefPubMedGoogle Scholar
  20. Eskeland NL, Zhou A, Dinh TQ, Wu H, Parmer RJ, Mains RE, O’Connor DT (1996) Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway. J Clin Investig 98:148–156CrossRefPubMedGoogle Scholar
  21. Gondre-Lewis MC, Petrache HI, Wassif CA, Harries D, Parsegian A, Porter FD, Loh YP (2006) Abnormal sterols in cholesterol-deficiency diseases cause secretory granule malformation and decreased membrane curvature. J Cell Sci 119:1876–1885CrossRefPubMedGoogle Scholar
  22. Gros-Louis F, Andersen PM, Dupre N, Urishitani M, Dion P, Souchon F, D’ Amour M, Camu W, Meininger V, Bouchard JP, Rouleau GA, Julien JP (2009) Chromogranin B P413L variant as risk factor and modifier of disease onset for amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 106:21777–21782CrossRefPubMedGoogle Scholar
  23. Han L, Suda M, Tsuzuki K, Wang R, Ohe Y, Hirai H, Watanabe T, Takeuchi T, Hosaka M (2008) A large form of secretogranin III functions as a sorting receptor for chromogranin A aggregates in PC12 cells. Mol Endocrinol 22:1935–1949CrossRefPubMedGoogle Scholar
  24. Hendy GN, Li T, Girard M, Feldstein RC, Mulay S, Desjardins R, Day R, Karaplis AC, Tremblay ML, Canaff L (2006) Targeted ablation of the chromogranin A (ChgA) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Mol Endocrinol 20:1935–1947CrossRefPubMedGoogle Scholar
  25. Hosaka M, Watanabe T, Sakai Y, Uchiyama Y, Takeuchi T (2002) Identification of a chromogranin A domain that mediates binding to secretogranin III and targeting to secretory granules in pituitary cells and pancreatic beta-cells. Mol Biol Cell 13:3388–3399CrossRefPubMedGoogle Scholar
  26. Hosaka M, Suda M, Sakai Y, Izumi T, Watanabe T, Takeuchi T (2004) Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A. J Biol Chem 279:3627–3634CrossRefPubMedGoogle Scholar
  27. Hosaka M, Watanabe T, Sakai Y, Kato T, Takeuchi T (2005) Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules. J Cell Sci 118:4785–4795CrossRefPubMedGoogle Scholar
  28. Huh YH, Jeon SH, Yoo SH (2003) Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 278:40581–40589CrossRefPubMedGoogle Scholar
  29. Jain RK, Chang WT, Geetha C, Joyce PB, Gorr SU (2002) In vitro aggregation of the regulated secretory protein chromogranin A. Biochem J 368:605–610CrossRefPubMedGoogle Scholar
  30. Jutras I, Seidah NG, Reudelhuber TL (2000) A predicted alpha -helix mediates targeting of the proprotein convertase PC1 to the regulated secretory pathway. J Biol Chem 275:40337–40343CrossRefPubMedGoogle Scholar
  31. Kang YK, Yoo SH (1997) Identification of the secretory vesicle membrane binding region of chromogranin A. FEBS Lett 404:87–90CrossRefPubMedGoogle Scholar
  32. Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230:25–32CrossRefPubMedGoogle Scholar
  33. Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106:499–509CrossRefPubMedGoogle Scholar
  34. Kim T, Zhang CF, Sun Z, Wu H, Loh YP (2005) Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule biogenesis. J Neurosci 25:6958–6961CrossRefPubMedGoogle Scholar
  35. Kim T, Gondre-Lewis MC, Arnaoutova I, Loh YP (2006) Dense-core secretory granule biogenesis. Physiology 21:124–133CrossRefPubMedGoogle Scholar
  36. Lankat-Buttgereit B, Muller S, Schmidt H, Parhofer KG, Gress TM, Goke R (2008) Knockdown of PDCD4 results in induction of proprotein convertase 1/3 and potent secretion of chromogranin A and secretogranin II in a neuroendocrine cell line. Biol Cell 100:703–715CrossRefPubMedGoogle Scholar
  37. Lechner T, Adlassnig C, Humpel C, Kaufman WA, Maier H, Reinstadler-Kramer K, Hinterholzl J, Mahata SK, Jellinger KA, Marksteiner J (2004) Chromogranin peptides in Alzheimer’s disease. Exp Gerontol 39:101–113CrossRefPubMedGoogle Scholar
  38. Mahapatra NR, O’Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Investig 115:1942–1952CrossRefPubMedGoogle Scholar
  39. Malosio ML, Giordano T, Laslop A, Meldolesi J (2004) Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype. J Cell Sci 117:743–749CrossRefPubMedGoogle Scholar
  40. Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y (2008) Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 192:309–324CrossRefGoogle Scholar
  41. Montero-Hadjadje M, Elias S, Chevalier L, Benard M, Tanguy Y, Turquier V, Galas L, Yon L, Malagon MM, Driouich A, Gasman S, Anouar Y (2009) Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N- and C-terminal peptides. J Biol Chem 284:12420–12431CrossRefPubMedGoogle Scholar
  42. Montesinos MS, Machado JD, Camacho M, Diaz J, Morales YG, Alvarez de la Rosa D, Carmona E, Castaneyra A, Viveros OH, O’Connor DT, Mahata SK, Borges R (2008) The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse. J Neurosci 28:3350–3358CrossRefPubMedGoogle Scholar
  43. Mosley CA, Taupenot L, Biswas N, Taulane JP, Olson NH, Vaingankar SM, Wen G, Schork NJ, Ziegler MG, Mahata SK, O’Connor DT (2007) Biogenesis of the secretory granule: chromogranin A coiled-coil structure results in unusual physical properties and suggests a mechanism for granule core condensation. Biochemistry 46:10999–11012CrossRefPubMedGoogle Scholar
  44. Munoz DG (1991) Chromogranin A-like immunoreactive neuritis are major constituents of senile plaques. Lab Investig 64:826–832PubMedGoogle Scholar
  45. O’Connor DT, Bernstein KN (1984) Radioimmunoassay of chromogranin A in plasma as a measure of exocytotic sympathoadrenal activity in normal subjects and patients with pheochromocytoma. N Engl J Med 311:764–770CrossRefPubMedGoogle Scholar
  46. O’Connor DT, Cadman PE, Smiley C, Salem RM, Rao F, Smith J, Funk SD, Mahata SK, Mahata M, Wen G, Sanchez-Margalet V (2005) Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clin Endocrinol Metab 90:5414–5425CrossRefPubMedGoogle Scholar
  47. Rao F, Wen G, Gayen JR, Das M, Vaingankar SM, Rana BK, Mahata M, Kennedy BP, Salem RM, Stridsberg M, Abel K, Smith DW, Eskin E, Schork NJ, Hamilton BA, Ziegler MG, Mahata SK, O’Connor DT (2007) Catecholamine release-inhibitory peptide catestatin (chromogranin A(352–372)): naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension. Circulation 115:2271–2281CrossRefPubMedGoogle Scholar
  48. Rudolf R, Salm T, Rustom A, Gerdes HH (2001) Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Mol Biol Cell 12:1353–1365PubMedGoogle Scholar
  49. Stettler H, Beuret N, Prescianotto-Baschong C, Fayard B, Taupenot L, Spiess M (2009) Determinants for chromogranin A sorting into the regulated secretory pathway are also sufficient to generate granule-like structures in non-endocrine cells. Biochem J 418:81–91CrossRefPubMedGoogle Scholar
  50. Takiyyuddin MA, Brown MR, Dinh TQ, Cervenka JH, Braun SD, Parmer RJ, Kennedy B, O’Connor DT (1994) Sympatho-adrenal secretion in humans: factors governing catecholamine and storage vesicle peptide co-release. J Auton Pharmacol 14:187–200Google Scholar
  51. Taupenot L, Harper KL, Mahapatra NR, Parmer RJ, Mahata SK, O’Connor DT (2002) Identification of a novel sorting determinant for the regulated pathway in the secretory protein chromogranin A. J Cell Sci 115:4827–4841CrossRefPubMedGoogle Scholar
  52. Thiele C, Huttner WB (1998) The disulfide-bonded loop of chromogranins, which is essential for sorting to secretory granules, mediates homodimerization. J Biol Chem 273:1223–1231CrossRefPubMedGoogle Scholar
  53. Thiele C, Hannah MJ, Fahrenholz F, Huttner WB (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2:42–49CrossRefPubMedGoogle Scholar
  54. Udupi V, Lee HM, Kurosky A, Greeley GH Jr (1999) Prohormone convertase-1 is essential for conversion of chromogranin A to pancreastatin. Regul Pept 83:123–127CrossRefPubMedGoogle Scholar
  55. Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, Julien JP (2006) Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9:108–118CrossRefPubMedGoogle Scholar
  56. Yasuhara O, Kawamata T, Aimi Y, McGeer EG, McGeer PL (1994) Expression of chromogranin A in lesions in the central nervous system from patients with neurological diseases. Neurosci Lett 170:13–16CrossRefPubMedGoogle Scholar
  57. Yoo SH, Lewis MS (1993) Dimerization and tetramerization properties of the C-terminal region of chromogranin A: a thermodynamic analysis. Biochemistry 32:8816–8822CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratory of Neuronal and Neuroendocrine Differentiation and CommunicationINSERM U982, University of RouenMont-St-Aignan CedexFrance

Personalised recommendations