Cellular and Molecular Neurobiology

, Volume 30, Issue 8, pp 1327–1333 | Cite as

The Rho Guanine Nucleotide Exchange Factors Intersectin 1L and β-Pix Control Calcium-Regulated Exocytosis in Neuroendocrine PC12 Cells

  • F. Momboisse
  • S. Ory
  • M. Ceridono
  • V. Calco
  • N. Vitale
  • M.-F. Bader
  • S. Gasman
Review Paper


GTPases of the Rho family are molecular switches that play an important role in a wide range of membrane-trafficking processes including neurotransmission and hormone release. We have previously demonstrated that RhoA and Cdc42 regulate calcium-dependent exocytosis in chromaffin cells by controlling actin dynamics, whereas Rac1 regulates lipid organisation. These findings raised the question of the upstream mechanism activating these GTPases during exocytosis. The guanine nucleotide exchange factors (GEFs) that catalyse the exchange of GDP for GTP are crucial elements regulating Rho signalling. Using an RNA interference approach, we have recently demonstrated that the GEFs Intersectin-1L and β-Pix, play essential roles in neuroendocrine exocytosis by controlling the activity of Cdc42 and Rac1, respectively. This review summarizes these results and discusses the functional importance of Rho GEFs in the exocytotic machinery in neuroendocrine cells.


PC12 cells Calcium-regulated exocytosis Rho Guanine nucleotide exchange factor β-Pix Intersectin Cancer 



We wish to thank Dr. Nancy Grant for critical reading of the manuscript. The work presented in this review was supported by a Human Frontier Science Program (HFSP) grant (RGY40-2003C), an ANR grant (ANR-07-JCJC-088-01), a ‘Association pour la Recherche sur le Cancer’ grant (ARC #1055) to S.G, an ANR grant (ANR-09-BLAN-0264-01) and a ‘Association pour la Recherche sur le Cancer’ grant (ARC #4051) to N.V as well as by the ‘Fondation pour la Recherche Médicale’ (FRM, fellowship to M.C.).


  1. Abdel-Latif D, Steward M, Macdonald DL, Francis GA, Dinauer MC, Lacy P (2004) Rac2 is critical for neutrophil primary granule exocytosis. Blood 104:832–839CrossRefPubMedGoogle Scholar
  2. Amin RH, Chen HQ, Veluthakal R, Silver RB, Li J, Li G, Kowluru A (2003) Mastoparan-induced insulin secretion from insulin-secreting betaTC3 and INS-1 cells: evidence for its regulation by Rho subfamily of G proteins. Endocrinology 144:4508–4518CrossRefPubMedGoogle Scholar
  3. Audebert S, Navarro C, Nourry C, Chasserot-Golaz S, Lecine P, Bellaiche Y, Dupont JL, Premont RT, Sempere C, Strub JM et al (2004) Mammalian scribble forms a tight complex with the betaPIX exchange factor. Curr Biol 14:987–995CrossRefPubMedGoogle Scholar
  4. Bader MF, Doussau F, Chasserot-Golaz S, Vitale N, Gasman S (2004) Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. Biochim Biophys Acta 1742:37–49CrossRefPubMedGoogle Scholar
  5. Bi Y, Williams JA (2005) A role for Rho and Rac in secretagogue-induced amylase release by pancreatic acini. Am J Physiol Cell Physiol 289:C22–C32CrossRefPubMedGoogle Scholar
  6. Cerione RA, Zheng Y (1996) The Dbl family of oncogenes. Curr Opin Cell Biol 8:216–222CrossRefPubMedGoogle Scholar
  7. Chahdi A, Sorokin A (2008) Protein kinase A-dependent phosphorylation modulates beta1Pix guanine nucleotide exchange factor activity through 14-3-3beta binding. Mol Cell Biol 28:1679–1687CrossRefPubMedGoogle Scholar
  8. Chahdi A, Sorokin A, Dunn MJ, Landry Y (2004) The Rac/Cdc42 guanine nucleotide exchange factor beta1Pix enhances mastoparan-activated Gi-dependent pathway in mast cells. Biochem Biophys Res Commun 317:384–389CrossRefPubMedGoogle Scholar
  9. Crivellato E, Nico B, Ribatti D (2008) The chromaffin vesicle: advances in understanding the composition of a versatile, multifunctional secretory organelle. Anat Rec (Hoboken) 291:1587–1602Google Scholar
  10. DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15:356–363CrossRefPubMedGoogle Scholar
  11. Desmarais V, Yamaguchi H, Oser M, Soon L, Mouneimne G, Sarmiento C, Eddy R, Condeelis J (2009) N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells. Cell Motil Cytoskeleton 66:303–316CrossRefPubMedGoogle Scholar
  12. Doussau F, Gasman S, Humeau Y, Vitiello F, Popoff M, Boquet P, Bader MF, Poulain B (2000) A Rho-related GTPase is involved in Ca(2+)-dependent neurotransmitter exocytosis. J Biol Chem 275:7764–7770CrossRefPubMedGoogle Scholar
  13. Ellenbroek SI, Collard JG (2007) Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24:657–672CrossRefPubMedGoogle Scholar
  14. Feng Q, Baird D, Peng X, Wang J, Ly T, Guan JL, Cerione RA (2006) Cool-1 functions as an essential regulatory node for EGF receptor- and Src-mediated cell growth. Nat Cell Biol 8:945–956CrossRefPubMedGoogle Scholar
  15. Feng Q, Baird D, Yoo S, Antonyak M, Cerione RA (2010) Phosphorylation of the cool-1/beta-Pix protein serves as a regulatory signal for the migration and invasive activity of Src-transformed cells. J Biol Chem 285:18806–18816CrossRefPubMedGoogle Scholar
  16. Ferraro F, Ma XM, Sobota JA, Eipper BA, Mains RE (2007) Kalirin/Trio Rho guanine nucleotide exchange factors regulate a novel step in secretory granule maturation. Mol Biol Cell 18:4813–4825CrossRefPubMedGoogle Scholar
  17. Filipenko NR, Attwell S, Roskelley C, Dedhar S (2005) Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via alpha-PIX. Oncogene 24:5837–5849CrossRefPubMedGoogle Scholar
  18. Foster DA (2007) Regulation of mTOR by phosphatidic acid? Cancer Res 67:1–4CrossRefPubMedGoogle Scholar
  19. Gasman S, Chasserot-Golaz S, Hubert P, Aunis D, Bader MF (1998) Identification of a potential effector pathway for the trimeric Go protein associated with secretory granules. Go stimulates a granule-bound phosphatidylinositol 4-kinase by activating RhoA in chromaffin cells. J Biol Chem 273:16913–16920CrossRefPubMedGoogle Scholar
  20. Gasman S, Chasserot-Golaz S, Popoff MR, Aunis D, Bader MF (1999) Involvement of Rho GTPases in calcium-regulated exocytosis from adrenal chromaffin cells. J Cell Sci 112(Pt 24):4763–4771PubMedGoogle Scholar
  21. Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF (2004) Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 15:520–531CrossRefPubMedGoogle Scholar
  22. Gratzl M, Breckner M, Prinz C (2004) Mechanisms of storage and exocytosis in neuroendocrine tumors. Endocr Pathol 15:1–16CrossRefPubMedGoogle Scholar
  23. Guipponi M, Scott HS, Chen H, Schebesta A, Rossier C, Antonarakis SE (1998) Two isoforms of a human intersectin (ITSN) protein are produced by brain-specific alternative splicing in a stop codon. Genomics 53:369–376CrossRefPubMedGoogle Scholar
  24. Harada A, Furuta B, Takeuchi K, Itakura M, Takahashi M, Umeda M (2000) Nadrin, a novel neuron-specific GTPase-activating protein involved in regulated exocytosis. J Biol Chem 275:36885–36891CrossRefPubMedGoogle Scholar
  25. Hong-Geller E, Cerione RA (2000) Cdc42 and Rac stimulate exocytosis of secretory granules by activating the IP(3)/calcium pathway in RBL-2H3 mast cells. J Cell Biol 148:481–494CrossRefPubMedGoogle Scholar
  26. Humbert P, Russell S, Richardson H (2003) Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays 25:542–553CrossRefPubMedGoogle Scholar
  27. Humeau Y, Popoff MR, Kojima H, Doussau F, Poulain B (2002) Rac GTPase plays an essential role in exocytosis by controlling the fusion competence of release sites. J Neurosci 22:7968–7981PubMedGoogle Scholar
  28. Hussain NK, Yamabhai M, Ramjaun AR, Guy AM, Baranes D, O’Bryan JP, Der CJ, Kay BK, McPherson PS (1999) Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J Biol Chem 274:15671–15677CrossRefPubMedGoogle Scholar
  29. Kutsche K, Yntema H, Brandt A, Jantke I, Nothwang HG, Orth U, Boavida MG, David D, Chelly J, Fryns JP et al (2000) Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nat Genet 26:247–250CrossRefPubMedGoogle Scholar
  30. Lenders JW, Eisenhofer G, Mannelli M, Pacak K (2005) Phaeochromocytoma. Lancet 366:665–675CrossRefPubMedGoogle Scholar
  31. Li Q, Ho CS, Marinescu V, Bhatti H, Bokoch GM, Ernst SA, Holz RW, Stuenkel EL (2003) Facilitation of Ca(2 +)-dependent exocytosis by Rac1-GTPase in bovine chromaffin cells. J Physiol 550:431–445CrossRefPubMedGoogle Scholar
  32. Mains RE, Alam MR, Johnson RC, Darlington DN, Back N, Hand TA, Eipper BA (1999) Kalirin, a multifunctional PAM COOH-terminal domain interactor protein, affects cytoskeletal organization and ACTH secretion from AtT-20 cells. J Biol Chem 274:2929–2937CrossRefPubMedGoogle Scholar
  33. Malacombe M, Ceridono M, Calco V, Chasserot-Golaz S, McPherson PS, Bader MF, Gasman S (2006) Intersectin-1L nucleotide exchange factor regulates secretory granule exocytosis by activating Cdc42. EMBO J 25:3494–3503CrossRefPubMedGoogle Scholar
  34. Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L (1998) PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1:183–192CrossRefPubMedGoogle Scholar
  35. Martin TA, Pereira G, Watkins G, Mansel RE, Jiang WG (2008) N-WASP is a putative tumour suppressor in breast cancer cells, in vitro and in vivo, and is associated with clinical outcome in patients with breast cancer. Clin Exp Metastasis 25:97–108CrossRefPubMedGoogle Scholar
  36. Meyer MZ, Deliot N, Chasserot-Golaz S, Premont RT, Bader MF, Vitale N (2006) Regulation of neuroendocrine exocytosis by the ARF6 GTPase-activating protein GIT1. J Biol Chem 281:7919–7926CrossRefPubMedGoogle Scholar
  37. Momboisse F, Lonchamp E, Calco V, Ceridono M, Vitale N, Bader MF, Gasman S (2009a) BetaPIX-activated Rac1 stimulates the activation of phospholipase D, which is associated with exocytosis in neuroendocrine cells. J Cell Sci 122:798–806CrossRefPubMedGoogle Scholar
  38. Momboisse F, Ory S, Calco V, Malacombe M, Bader MF, Gasman S (2009b) Calcium-regulated exocytosis in neuroendocrine cells: intersectin-1L stimulates actin polymerization and exocytosis by activating Cdc42. Ann N Y Acad Sci 1152:209–214CrossRefPubMedGoogle Scholar
  39. Moon SY, Zheng Y (2003) Rho GTPase-activating proteins in cell regulation. Trends Cell Biol 13:13–22CrossRefPubMedGoogle Scholar
  40. Nayal A, Webb DJ, Brown CM, Schaefer EM, Vicente-Manzanares M, Horwitz AR (2006) Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J Cell Biol 173:587–589CrossRefPubMedGoogle Scholar
  41. Nevins AK, Thurmond DC (2003) Glucose regulates the cortical actin network through modulation of Cdc42 cycling to stimulate insulin secretion. Am J Physiol Cell Physiol 285:C698–C710PubMedGoogle Scholar
  42. Okamoto M, Schoch S, Sudhof TC (1999) EHSH1/intersectin, a protein that contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein connection between exocytosis and endocytosis? J Biol Chem 274:18446–18454CrossRefPubMedGoogle Scholar
  43. Osmani N, Vitale N, Borg JP, Etienne-Manneville S (2006) Scrib Controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr Biol 16:2395–2405Google Scholar
  44. Pechstein A, Bacetic J, Vahedi-Faridi A, Gromova K, Sundborger A, Tomlin N, Krainer G, Vorontsova O, Schafer JG, Owe SG et al (2010) Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proc Natl Acad Sci USA 107:4206–4211Google Scholar
  45. Ridley AJ (2001) Rho proteins: linking signaling with membrane trafficking. Traffic 2:303–310CrossRefPubMedGoogle Scholar
  46. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180CrossRefPubMedGoogle Scholar
  47. Sengar AS, Wang W, Bishay J, Cohen S, Egan SE (1999) The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J 18:1159–1171CrossRefPubMedGoogle Scholar
  48. Shi M, Zheng Y, Garcia A, Xu L, Foster DA (2007) Phospholipase D provides a survival signal in human cancer cells with activated H-Ras or K-Ras. Cancer Lett 258:268–275CrossRefPubMedGoogle Scholar
  49. Shin EY, Shin KS, Lee CS, Woo KN, Quan SH, Soung NK, Kim YG, Cha CI, Kim SR, Park D et al (2002) Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem 277:44417–44430CrossRefPubMedGoogle Scholar
  50. ten Klooster JP, Jaffer ZM, Chernoff J, Hordijk PL (2006) Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. J Cell Biol 172:759–769CrossRefPubMedGoogle Scholar
  51. Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582:2093–2101CrossRefPubMedGoogle Scholar
  52. Veluthakal R, Madathilparambil SV, McDonald P, Olson LK, Kowluru A (2009) Regulatory roles for Tiam1, a guanine nucleotide exchange factor for Rac1, in glucose-stimulated insulin secretion in pancreatic beta-cells. Biochem Pharmacol 77:101–113PubMedGoogle Scholar
  53. Vitale N, Caumont AS, Chasserot-Golaz S, Du G, Wu S, Sciorra VA, Morris AJ, Frohman MA, Bader MF (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20:2424–2434CrossRefPubMedGoogle Scholar
  54. Vitale N, Chasserot-Golaz S, Bader MF (2002) Regulated secretion in chromaffin cells: an essential role for ARF6-regulated phospholipase D in the late stages of exocytosis. Ann NY Acad Sci 971:193–200CrossRefPubMedGoogle Scholar
  55. Wang Z, Thurmond DC (2010) Differential phosphorylation of RhoGDI mediates the distinct cycling of Cdc42 and Rac1 to regulate second-phase insulin secretion. J Biol Chem 285:6186–6197CrossRefPubMedGoogle Scholar
  56. Wang JB, Wu WJ, Cerione RA (2005) Cdc42 and Ras cooperate to mediate cellular transformation by intersectin-L. J Biol Chem 280:22883–22891CrossRefPubMedGoogle Scholar
  57. Wang WS, Zhong HJ, Xiao DW, Huang X, Liao LD, Xie ZF, Xu XE, Shen ZY, Xu LY, Li EM (2010) The expression of CFL1 and N-WASP in esophageal squamous cell carcinoma and its correlation with clinicopathological features. Dis Esophagus 23:512–521CrossRefPubMedGoogle Scholar
  58. Winkler H (1993) The adrenal chromaffin granule: a model for large dense core vesicles of endocrine and nervous tissue. J Anat 183(Pt 2):237–252PubMedGoogle Scholar
  59. Xin X, Ferraro F, Back N, Eipper BA, Mains RE (2004) Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 117:4739–4748CrossRefPubMedGoogle Scholar
  60. Yamabhai M, Hoffman NG, Hardison NL, McPherson PS, Castagnoli L, Cesareni G, Kay BK (1998) Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J Biol Chem 273:31401–31407CrossRefPubMedGoogle Scholar
  61. Za L, Albertinazzi C, Paris S, Gagliani M, Tacchetti C, de Curtis I (2006) BetaPIX controls cell motility and neurite extension by regulating the distribution of GIT1. J Cell Sci 119:2654–2666CrossRefPubMedGoogle Scholar
  62. Zeniou-Meyer M, Borg JP, Vitale N (2005) The GIT-PIX protein complex: a hub to ARF and Rac/Cdc42 GTPases. Med Sci (Paris) 21:849–853Google Scholar
  63. Zeniou-Meyer M, Zabari N, Ashery U, Chasserot-Golaz S, Haeberle AM, Demais V, Bailly Y, Gottfied I, Nakanishi H, Neiman AM et al (2007) PLD1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granule at a late stage. J Biol Chem 37(4):467–476Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • F. Momboisse
    • 1
  • S. Ory
    • 1
  • M. Ceridono
    • 1
  • V. Calco
    • 1
  • N. Vitale
    • 1
  • M.-F. Bader
    • 1
  • S. Gasman
    • 1
  1. 1.CNRS UPR 3212, Institut des Neurosciences Cellulaires et IntégrativesUniversité de StrasbourgStrasbourgFrance

Personalised recommendations