Cellular and Molecular Neurobiology

, Volume 30, Issue 8, pp 1209–1216 | Cite as

Down-Modulation of Ca2+ Channels by Endogenously Released ATP and Opioids: from the Isolated Chromaffin Cell to the Slice of Adrenal Medullae

  • A. Hernández
  • P. Segura-Chama
  • E. Albiñana
  • A. Hernández-Cruz
  • J. M. Hernández-Guijo
Review Paper


Modifications in Ca2+ influx may lead to profound changes in the cell activity associated with Ca2+-dependent processes, from muscle contraction and neurotransmitter release to calcium-mediated cell death. Therefore, calcium entry into the cell requires fine regulation. In this context, understanding of the modulation of voltage-dependent Ca2+ channels seems to be critical. The modulatory process results in the enhancement or decrement of calcium influx that may regulate the local and global cytosolic Ca2+ concentrations. Here, we summarize the well-established data on this matter described in isolated chromaffin cells by our laboratory and others, and the new results we have obtained in a more physiological preparation: freshly isolated slices of mouse adrenal medullae.


Mouse adrenal slices Ca2+ channels Chromaffin cells Autocrine modulation Paracrine modulation ATP Methionine-enkephalin 



The authors are indebted to Nicolás Jiménez for technical support and Claudia V. Rivera, head of the IFC Animal Facility for continuous advice. This work was supported by Instituto de Salud Carlos III (grant PI080227 to J. M. H.-G.), and DGAPA-UNAM (grant IN227910 to A. H.-C.), and CONACyT (grants 42662, 79763, and 102085 to A. H.-C.). P. S. receives a Ph.D. fellowship from CONACyT. A. H. a former postdoctoral fellow from CTIC-DGAPA, UNAM and presently postdoctoral fellow from CONACyT. E. A. receives a Ph.D fellowship from Fundación Teófilo Hernando. We also acknowledge financial support from the cooperation agreement between the National Autonomous University of México (UNAM) and the Autonomous University of Madrid (UAM), and CEAL-UAM-Banco de Santander.

Supplementary material

10571_2010_9576_MOESM1_ESM.tif (3.7 mb)
Supplementary material 1 (TIFF 3764 kb)


  1. Albillos A, Artalejo AR, Lopez MG, Gandia L, Garcia AG, Carbone E (1994) Ca2+ channel subtypes in cat chromaffin cells. J Physiol 477:197–213PubMedGoogle Scholar
  2. Albillos A, Carbone E, Gandia L, Garcia AG, Pollo A (1996) Opioid inhibition of Ca2+ channel subtypes in bovine chromaffin cells: selectivity of action and voltagedependence. Eur J Neurosci 8:1561–1570CrossRefPubMedGoogle Scholar
  3. Baldelli P, Hernandez-Guijo JM, Carabelli V, Novara M, Cesetti T, Andres-Mateos E, Montiel C, Carbone E (2004) Direct and remote modulation of L-channels in chromaffin cells: distinct actions on alpha1C and alpha1D subunits? Mol Neurobiol 29:73–96CrossRefPubMedGoogle Scholar
  4. Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage-dependence. Nature 340:153–155CrossRefPubMedGoogle Scholar
  5. Bean BP, Nowycky MC, Tsien RW (1984) Beta-adrenergic modulation of Ca2+ channels in frog ventricular heart cells. Nature 307:371–375CrossRefPubMedGoogle Scholar
  6. Bourinet E, Soong TW, Stea A, Snutch TP (1996) Determinants of the G protein-dependent opioid modulation of neuronal Ca2+ channels. Proc Natl Acad Sci USA 93:1486–1491CrossRefPubMedGoogle Scholar
  7. Carabelli V, Lovallo M, Magnelli V, Zucker H, Carbone E (1996) Voltage-dependent modulation of single N-type Ca2+ channel kinetics by receptor agonists in IMR32 cells. Biophys J 70:2144–2154CrossRefPubMedGoogle Scholar
  8. Carabelli V, Carra I, Carbone E (1998) Localized secretion of ATP and opioids revealed through single Ca2+ channel modulation in bovine chromaffin cells. Neuron 20:1255–1268CrossRefPubMedGoogle Scholar
  9. Carabelli V, Hernandez-Guijo JM, Baldelli P, Carbone E (2001) Direct autocrine inhibition and cAMP-dependent potentiation of single L-type Ca2+ channels in bovine chromaffin cells. J Physiol 532:73–90CrossRefPubMedGoogle Scholar
  10. Carabelli V, Giancippoli A, Baldelli P, Carbone E, Artalejo AR (2003) Distinct potentiation of L-type currents and secretion by cAMP in rat chromaffin cells. Biophys J 85:1326–1337CrossRefPubMedGoogle Scholar
  11. Carbone E, Carabelli V, Cesetti T, Baldelli P, Hernández-Guijo JM, Giusta L (2001) G-protein- and cAMP-dependent L-channel gating modulation: a manyfold system to control calcium entry in neurosecretory cells. Eur J Physiol (Pflügers Archiv) 442:801–813CrossRefGoogle Scholar
  12. Castillo CJF, Moro MA, del Valle M, Sillero A, García AG, Sillero MA (1992) Diadenosine tetraphosphate (AP4A) is coreleased with ATP and catecholamines from bovine adrenal medulla. J Neurochem 59:723–732CrossRefPubMedGoogle Scholar
  13. Cesetti T, Hernandez-Guijo JM, Baldelli P, Carabelli V, Carbone E (2003) Opposite action of beta1- and beta2-adrenergic receptors on Ca(V)1 L-channel current in rat adrenal chromaffin cells. J Neurosci 23:73–83PubMedGoogle Scholar
  14. Chan SA, Polo-Parada L, Smith C (2005) Action potential stimulation reveals an increased role for P/Q-Ca2+ channel-dependent exocytosis in mouse adrenal tissue slices. Arch Biochem Biophys 435:65–73CrossRefPubMedGoogle Scholar
  15. Cox DH, Dunlap K (1992) Pharmacological discrimination of N-type from L-type calcium current and its selective modulation by transmitters. J Neurosci 12:906–914PubMedGoogle Scholar
  16. Currie KP, Fox AP (1996) ATP serves as a negative feedback inhibitor of voltage gated Ca2+ channel currents in cultured bovine adrenal chromaffin cells. Neuron 16:1027–1036CrossRefPubMedGoogle Scholar
  17. Dolphin AC (1996) Facilitation of Ca2+ current in excitable cells. Trends Neurosci 19:35–43CrossRefPubMedGoogle Scholar
  18. Dolphin AC (1998) Mechanisms of modulation of voltage-dependent Ca2+ channels by G proteins. J Physiol 506:3–11CrossRefPubMedGoogle Scholar
  19. Dolphin AC (1999) L-type Ca2+ channel modulation. Adv Second Messenger Phosphoprotein Res 33:153–177PubMedGoogle Scholar
  20. Dunlap K, Fischbach GD (1978) Neurotransmitters decrease the calcium component of sensory neurone action potentials. Nature 276:837–839CrossRefPubMedGoogle Scholar
  21. Fenwick EM, Marty A, Neher E (1982) Sodium and Ca2+ channels in bovine chromaffin cells. J Physiol 331:599–635PubMedGoogle Scholar
  22. Galvan M, Adams PR (1982) Control of calcium current in rat sympathetic neurons by norepinephrine. Brain Res 244:135–144CrossRefPubMedGoogle Scholar
  23. Gandia L, Garcia AG, Morad M (1993) ATP modulation of Ca2+ channels in chromaffin cells. J Physiol 470:55–72PubMedGoogle Scholar
  24. García AG, de Diego AMG, Gandía L, Borges R, García-Sancho J (2006) Calcium signaling and exoctytosis in chromaffin cells. J Physiol Rev 86:1093–1131CrossRefGoogle Scholar
  25. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+-channels by G-protein-gamma subunits. Nature 380:258–262CrossRefPubMedGoogle Scholar
  26. Hernandez-Guijo JM, Gandia L, Lara B, Garcia AG (1998) Autocrine/paracrine modulation of Ca2+ channels in bovine chromaffin cells. Eur J Physiol (Pflügers Archiv) 437:104–113CrossRefGoogle Scholar
  27. Hernandez-Guijo JM, Carabelli V, Gandia L, Garcia AG, Carbone E (1999) Voltage-independent autocrine modulation of L-type channels mediated by ATP, opioids and catecholamines in rat chromaffin cells. Eur J Neurosci 11:3574–3584CrossRefPubMedGoogle Scholar
  28. Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) The GTP-binding protein, Go, regulates neuronal Ca2+ channels. Nature 325:445–447CrossRefPubMedGoogle Scholar
  29. Holman ME, Coleman HA, Tonta MA, Parkington HC (1994) Synaptic transmission from splanchnic nerves to the adrenal medulla of guinea-pigs. J Physiol 478:115–124PubMedGoogle Scholar
  30. Holz GGI, Rane SG, Dunlap K (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent Ca2+ channels. Nature 319:670–672CrossRefPubMedGoogle Scholar
  31. Ikeda SR (1991) Double-pulse Ca2+ channel current facilitation in adult rat sympathetic neurones. J Physiol 439:181–214PubMedGoogle Scholar
  32. Ikeda SR (1996) Voltage-dependent modulation of N-type Ca2+ channels by G protein-gamma subunits. Nature 380:255–258CrossRefPubMedGoogle Scholar
  33. Kajiwara R, Sand O, Kidokoro Y, Barish ME, Iijima T (1997) Functional organization of chromaffin cells and cholinergic synaptic transmission in rat adrenal medulla. Jpn J Physiol 47:449–464CrossRefPubMedGoogle Scholar
  34. Kirpekar SM, Puig M (1971) Effect of flow-stop on noradrenaline release from normal spleens and spleens treated with cocaine, phentolamine or phenoxybenzamine. Br J Pharmacol 43:359–369PubMedGoogle Scholar
  35. Lim W, Kim SJ, Yan HD, Kim J (1997) Ca2+-channel-dependent and -independent inhibition of exocytosis by extracellular ATP in voltage-clamped rat adrenal chromaffin cells. Eur J Physiol (Pflügers Archiv) 435:34–42CrossRefGoogle Scholar
  36. Lipscombe D, Kongsamut S, Tsien RW (1989) Alpha-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 340:639–642CrossRefPubMedGoogle Scholar
  37. Luebke JI, Dunlap K (1994) Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Eur J Physiol (Pflügers Archiv) 428:499–507CrossRefGoogle Scholar
  38. Machado JD, Morales A, Gomez JF, Borges R (2001) cAMP modulates exocytotic kinetics and increases quantal size in chromaffin cells. Mol Pharmacol 60:514–520PubMedGoogle Scholar
  39. Martin AO, Mathieu MN, Chevillard C, Guerineau NC (1991) Gap junctions mediate electrical signalling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: a role in catecholamine release. J Neurosci 21:5397–5405Google Scholar
  40. Powell AD, Teschemacher AG, Seward EP (2000) P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated Ca2+ channels. J Neurosci 20:606–616PubMedGoogle Scholar
  41. Qin N, Platano D, Olcese R, Stefani E, Birnbaumer L (1997) Direct interaction of G-gamma with a C terminal G-gamma binding domain of the Ca2+ channel_1 subunit is responsible for channel inhibition by G protein coupled receptors. Proc Natl Acad Sci USA 94:8866–8871CrossRefPubMedGoogle Scholar
  42. Reuter H (1987) Ca2+ channel modulation by β-adrenergic neurotransmitters in the heart. Experientia 43:1173–1175CrossRefPubMedGoogle Scholar
  43. Scott RH, Dolphin AC (1986) Regulation of calcium currents by a GTP analogue: potentiation of (-)-baclofen-mediated inhibition. Neurosci Lett 69:59–64CrossRefPubMedGoogle Scholar
  44. Sculptoreanu A, Scheuer T, Catterall WA (1993) Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 364:240–243CrossRefPubMedGoogle Scholar
  45. Stea A, Soong TW, Snutch TP (1995) Determinants of PKC-dependent modulation of a family of neuronal Ca2+ channels. Neuron 15:929–940CrossRefPubMedGoogle Scholar
  46. Ulate G, Scott SR, Gonzalez J, Gilabert JA, Artalejo AR (2000) Extracellular ATP regulates exocytosis in inhibiting multiple Ca2+ channel types in bovine chromaffin cells. Eur J Physiol (Pflügers Archiv) 439:304–314CrossRefGoogle Scholar
  47. Voets T, Neher E, Moser T (1999) Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. Neuron 23:607–615CrossRefPubMedGoogle Scholar
  48. Winkler H, Sietzen M, Schober M (1987) The life cycle of catecholamine-storing vesicles. Ann NY Acad Sci 493:3–19CrossRefPubMedGoogle Scholar
  49. Yaari Y, Hamon B, Lux H (1987) Development of two types of Ca2+ channels in cultured mammalian hippocampal neurons. Science 235:680–685CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • A. Hernández
    • 1
  • P. Segura-Chama
    • 1
  • E. Albiñana
    • 2
    • 3
  • A. Hernández-Cruz
    • 1
  • J. M. Hernández-Guijo
    • 2
    • 3
  1. 1.Departamento de Neurociencia Cognitiva, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  2. 2.Instituto Teófilo Hernando, Universidad Autónoma de MadridMadridSpain
  3. 3.Departamento de Farmacología y Terapéutica, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations