Cellular and Molecular Neurobiology

, Volume 30, Issue 8, pp 1315–1319 | Cite as

Association of SNAREs and Calcium Channels with the Borders of Cytoskeletal Cages Organizes the Secretory Machinery in Chromaffin Cells

  • Cristina J. Torregrosa-Hetland
  • José Villanueva
  • Inmaculada López-Font
  • Virginia Garcia-Martinez
  • Amparo Gil
  • Virginia Gonzalez-Vélez
  • Javier Segura
  • Salvador Viniegra
  • Luis M. Gutiérrez
Review Paper


In chromaffin cells, SNARE proteins, forming the basic exocytotic machinery are present in membrane clusters of 500–600 nm in diameter. These microdomains containing both SNAP-25 and syntaxin-1 are dynamic and the expression of altered forms of SNAREs modifies not only their motion but also the mobility of the associated granules. It is also clear that SNARE microdomain location defines the place for individual vesicle fusion and that the alteration of cluster dynamics affects the fusion process itself. Interestingly, these SNARE patches colocalize with the borders of F-actin cages forming the cytoskeletal cortical network, and these borders also contain clusters of L- and P/Q type calcium channels. The organization of the secretory machinery in association with the borders of cytoskeletal cages seems to be an effective way to promote fast coupling between calcium entry and catecholamine release as demonstrated with the use of mathematical secretory models.


Chromaffin cells SNAREs Calcium channels Cytoskeleton Exocytosis Active sites 



This work was supported by grants from the Spanish Ministerio de Ciencia e Innovación (MICINN, Fondos FEDER: BFU2008-02154/BFI), and the Generalitat Valenciana (GRUPOS03/040 and ACOMP09/036). CJT-H was recipient of and FPU fellowship.


  1. An SJ, Almers W (2004) Tracking SNARE complex formation in live endocrine cells. Science 306:1042–1046CrossRefPubMedGoogle Scholar
  2. Bittner MA, Dasgupta BR, Holz RW (1989) Isolated light chains of botulinum neurotoxins inhibit exocytosis. Studies in digitonin-permeabilized chromaffin cells. J Biol Chem 264:10354–10360PubMedGoogle Scholar
  3. Bittner MA, Holz RW (1993) Protein kinase C and clostridial neurotoxins affect discrete and related steps in the secretory pathway. Cell Mol Neurobiol 13:649–664CrossRefPubMedGoogle Scholar
  4. Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De CP, Sudhof TC, Niemann H, Jahn R (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365:160–163CrossRefPubMedGoogle Scholar
  5. Catterall WA (1999) Interactions of presynaptic Ca2+ channels and SNARE proteins in neurotransmitter release. Ann N Y Acad Sci 868:144–159CrossRefPubMedGoogle Scholar
  6. Chamberlain LH, Burgoyne RD, Gould GW (2001) SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci USA 98:5619–5624CrossRefPubMedGoogle Scholar
  7. Criado M, Gil A, Viniegra S, Gutierrez LM (1999) A single amino acid near the C terminus of the synaptosome associated protein of 25 kDa (SNAP-25) is essential for exocytosis in chromaffin cells. Proc Natl Acad Sci USA 96:7256–7261CrossRefPubMedGoogle Scholar
  8. Doreian BW, Fulop TJ, Smith CB (2008) Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. J Neurosci 28:4470–4478CrossRefPubMedGoogle Scholar
  9. Gil A, Gutierrez LM, Carrasco-Serrano C, Alonso MT, Viniegra S, Criado M (2002) Modifications in the C terminus of the synaptosome-associated protein of 25 kDa (SNAP-25) and in the complementary region of synaptobrevin affect the final steps of exocytosis. J Biol Chem 277:9904–9910CrossRefPubMedGoogle Scholar
  10. Gil A, Segura J, Pertusa JA, Soria B (2000) Monte carlo simulation of 3-D buffered Ca(2+) diffusion in neuroendocrine cells. Biophys J 78:13–33CrossRefPubMedGoogle Scholar
  11. Gil A, Viniegra S, Gutierrez LM (1998) Dual effects of botulinum neurotoxin A on the secretory stages of chromaffin cells. Eur J Neurosci 10:3369–3378CrossRefPubMedGoogle Scholar
  12. Gil A, Viniegra S, Neco P, Gutierrez LM (2001) Co-localization of vesicles and P/Q Ca2+-channels explains the preferential distribution of exocytotic active zones in neurites emitted by bovine chromaffin cells. Eur J Cell Biol 80:358–365CrossRefPubMedGoogle Scholar
  13. Giner D, Lopez I, Villanueva J, Torres V, Viniegra S, Gutierrez LM (2007) Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells. Neuroscience 146:659–669CrossRefPubMedGoogle Scholar
  14. Giner D, Neco P, Francés MM, Lopez I, Viniegra S, Gutierrez LM (2005) Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 118:2871–2880CrossRefPubMedGoogle Scholar
  15. Grant NJ, Hepp R, Krause W, Aunis D, Oehme P, Langley K (1999) Differential expression of SNAP-25 isoforms and SNAP-23 in the adrenal gland. J Neurochem 72:363–372CrossRefPubMedGoogle Scholar
  16. Hodel A, Schafer T, Gerosa D, Burger MM (1994) In chromaffin cells, the mammalian Sec1p homologue is a syntaxin 1A-binding protein associated with chromaffin granules. J Biol Chem 269:8623–8626PubMedGoogle Scholar
  17. Lang T, Bruns D, Wenzel D, Riedel D, Holroyd P, Thiele C, Jahn R (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20:2202–2213CrossRefPubMedGoogle Scholar
  18. Lawrence GW, Weller U, Dolly JO (1994) Botulinum A and the light chain of tetanus toxins inhibit distinct stages of Mg. ATP-dependent catecholamine exocytosis from permeabilised chromaffin cells. Eur J Biochem 222:325–333CrossRefPubMedGoogle Scholar
  19. Lopez I, Giner D, Ruiz-Nuño A, Fuentealba J, Viniegra S, García AG, Davletov B, Gutierrez LM (2007) Tigth coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells. Cell Calcium 41:547–558CrossRefPubMedGoogle Scholar
  20. Lopez I, Ortiz JA, Villanueva J, Torres V, Torregrosa-Hetland CJ, Francés MM, Viniegra S, Gutierrez LM (2009) Vesicle motion and fusion are altered in chromaffin cells with increased SNARE cluster dynamics. Traffic 10:172–185CrossRefPubMedGoogle Scholar
  21. Moser T, Neher E (1997) Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices. J Neurosci 17:2314–2323PubMedGoogle Scholar
  22. Ñeco P, Giner D, Viniegra S, Borges R, Villaroel A, Gutiérrez LM (2004) New roles of Myosin II during vesicle transport and fusion i chromaffin cells. J Biol Chem 279:27450–27457CrossRefPubMedGoogle Scholar
  23. Ñeco P, Fernandez-Peruchena C, Navas S, Gutiérrez LM, Alvarez de Toledo G, Alés E (2008) Myosin II cotributes to fusion pore expansion during exocytosis. J Biol Chem 283:10949–10957CrossRefPubMedGoogle Scholar
  24. Ohara-Imaizumi M, Nishiwaki C, Kikuta T, Kumakura K, Nakamichi Y, Nagamatsu S (2004) Site of docking and fusion of insulin secretory granules in live MIN6 beta cells analyzed by TAT-conjugated anti-syntaxin 1 antibody and total internal reflection fluorescence microscopy. J Biol Chem 279:8403–8408CrossRefPubMedGoogle Scholar
  25. Penner R, Neher E, Dreyer F (1986) Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 324:76–78CrossRefPubMedGoogle Scholar
  26. Rickman C, Archer DA, Meunier FA, Craxton M, Fukuda M, Burgoyne RD, Davletov B (2004) Synaptotagmin interaction with the syntaxin/SNAP-25 dimer is mediated by an evolutionarily conserved motif and is sensitive to inositol hexakisphosphate. J Biol Chem 279(13):12574–12579CrossRefPubMedGoogle Scholar
  27. Robinson IM, Finnegan JM, Monck JR, Wightman RM, Fernandez JM (1995) Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells. Proc Natl Acad Sci USA 92:2474–2478CrossRefPubMedGoogle Scholar
  28. Roth D, Burgoyne RD (1994) SNAP-25 is present in a SNARE complex in adrenal chromaffin cells. FEBS Lett 351:207–210CrossRefPubMedGoogle Scholar
  29. Schiavo G, Santucci A, Dasgupta BR, Mehta PP, Jontes J, Benfenati F, Wilson MC, Montecucco C (1993) Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 335:99–103CrossRefPubMedGoogle Scholar
  30. Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, Harke B, Donnert G, Rammner B, Eggeling C, Hell SW, Grubmuller H, Lang T (2007) Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317:1072–1076CrossRefPubMedGoogle Scholar
  31. Sorensen JB, Matti U, Wei SH, Nehring RB, Voets T, Ashery U, Binz T, Neher E, Rettig J (2002) The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc Natl Acad Sci USA 99:1627–1632CrossRefPubMedGoogle Scholar
  32. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395:347–353CrossRefPubMedGoogle Scholar
  33. Villanueva J, Torregrosa-Hetland CJ, Gil A, González-Vélez V, Segura J, Viniegra S, Gutierrez LM (2010) The organization of the secretory machinery in chromaffin cells as a major factors in modelling exocytosis. HFSP J 4(2):85–92CrossRefPubMedGoogle Scholar
  34. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772CrossRefPubMedGoogle Scholar
  35. Wei S, Xu T, Ashery U, Kollewe A, Matti U, Antonin W, Rettig J, Neher E (2000) Exocytotic mechanism studied by truncated and zero layer mutants of the C-terminus of SNAP-25. EMBO J 19:1279–1289CrossRefPubMedGoogle Scholar
  36. Xu T, Binz T, Niemann H, Neher E (1998) Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat Neurosci 1:192–200CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Cristina J. Torregrosa-Hetland
    • 1
  • José Villanueva
    • 1
  • Inmaculada López-Font
    • 1
  • Virginia Garcia-Martinez
    • 1
  • Amparo Gil
    • 2
  • Virginia Gonzalez-Vélez
    • 3
  • Javier Segura
    • 4
  • Salvador Viniegra
    • 1
  • Luis M. Gutiérrez
    • 1
  1. 1.Instituto de NeurocienciasCentro Mixto CSIC-Universidad Miguel HernándezAlicanteSpain
  2. 2.Departamento de Matemática Aplicada y Ciencias de la ComputaciónUniversidad de CantabriaSantanderSpain
  3. 3.Área de Química Aplicada, Universidad Autónoma Metropolitana-AzcapotzalcoMexicoMexico
  4. 4.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations