Advertisement

Cellular and Molecular Neurobiology

, Volume 30, Issue 5, pp 727–735 | Cite as

Pitavastatin Strengthens the Barrier Integrity in Primary Cultures of Rat Brain Endothelial Cells

  • Yoichi Morofuji
  • Shinsuke Nakagawa
  • Gohei So
  • Takeshi Hiu
  • Shoji Horai
  • Kentaro Hayashi
  • Kunihiko Tanaka
  • Kazuhiko Suyama
  • Maria A. Deli
  • Izumi Nagata
  • Masami Niwa
Original Research

Abstract

Statins have a neuroprotective effect in neurological diseases, a pleiotropic effect possibly related to blood–brain barrier (BBB) function. We investigated the effect of pitavastatin on barrier functions of an in vitro BBB model with primary cultures of rat brain capillary endothelial cells (RBEC). Pitavastatin increased the transendothelial electrical resistance (TEER), an index of barrier tightness of interendothelial tight junctions (TJs), at a concentration of 10−8 M, and decreased the endothelial permeability for sodium fluorescein through the RBEC monolayer. The increase in TEER was significantly reduced in the presence of isoprenoid geranylgeranyl pyrophosphate, whereas farnesyl pyrophosphate had no effect on TEER. Our immunocytochemical and Western blot analyses revealed that treatment with pitavastatin enhanced the expression of claudin-5, a main functional protein of TJs. Our data indicate that pitavastatin strengthens the barrier integrity in primary cultures of RBEC. The BBB-stabilizing effect of pitavastatin may be mediated partly through inhibition of the mevalonate pathway and subsequent up-regulation of claudin-5 expression.

Keywords

Pitavastatin Statins Blood–brain barrier Tight junctions Claudin-5 Transendothelial electrical resistance Geranyl geranylation Brain endothelial cells (rat) 

Notes

Acknowledgments

Pitavastatin was obtained as a generous gift from Kowa Co., Ltd., Japan. We wish to thank Yasuko Yamashita, Takanori Shimono, and Tsuyoshi Izumo for their critical reviews of the manuscript and outstanding professional guidance. This work was supported by a Grant-in-Aid for Scientific Research (C) (21591848) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23CrossRefPubMedGoogle Scholar
  2. Abbott NJ, Ronnback L, Hannson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53CrossRefPubMedGoogle Scholar
  3. Amarenco P, Bogousslavsky J, Callahan A III, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KM, Zivin JA (2006) High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 355:549–559CrossRefPubMedGoogle Scholar
  4. Bolego C, Poli A, Cignarella A, Catapano AL, Paoletti R (2002) Novel statins: pharmacological and clinical results. Cardiovasc Drugs Ther 16:251–257CrossRefPubMedGoogle Scholar
  5. Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L (2007) Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 6:650–661CrossRefPubMedGoogle Scholar
  6. Crouse JR III, Byington RP, Furberg CD (1998) HMG-CoA reductase inhibitor therapy and stroke risk reduction: an analysis of clinical trials data. Atherosclerosis 138:11–24CrossRefPubMedGoogle Scholar
  7. Deli MA, Szabo C, Dung N, Joo F (1997) Immunohistochemical and electron microscopy detections on primary cultures of rat cerebral endothelial cells. In: Boer AG, Sutanto W (eds) Drug transport across the blood-brain barrier: In vivo and in vitro techniques. Harwood Academic Publishers, Amsterdam, pp 23–28Google Scholar
  8. Deli MA, Ábrahám CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology and pharmacology. Cell Mol Neurobiol 25:59–127CrossRefPubMedGoogle Scholar
  9. Di Napoli P, Di Muzio M, Maggi A, Taccardi AA, Conti P, Barsotti A (2000) Simvastatin reduces postischemic coronary dysfunction: ultrastructural and functional findings after acute administration. Microvasc Res 59:181–185CrossRefPubMedGoogle Scholar
  10. Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188CrossRefPubMedGoogle Scholar
  11. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44CrossRefPubMedGoogle Scholar
  12. Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul Pept 123:77–83CrossRefPubMedGoogle Scholar
  13. Hiu T, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Kawakubo J, Honda M, Suyama K, Nagata I, Niwa M (2008) Tissue plasminogen activator enhances the hypoxia/reoxygenation-induced impairment of the blood-brain barrier in a primary culture of rat brain endothelial cells. Cell Mol Neurobiol 28:1139–1146CrossRefPubMedGoogle Scholar
  14. Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ (1998) Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 244:312–316CrossRefPubMedGoogle Scholar
  15. Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, Niwa M (2006) Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 26:109–118CrossRefPubMedGoogle Scholar
  16. Iglesias P, Diez JJ (2003) New drugs for the treatment of hypercholesterolaemia. Expert Opin Investig Drugs 12:1777–1789CrossRefPubMedGoogle Scholar
  17. Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, Nagasawa K, Wada I, Sawada N (2003) Cyclic AMP induces phsophorylation of claudin-5 gene in blood-brain barrier endothelial cells via protein-kinase A-dependent and–independent pathway. Exp Cell Res 290:275–288CrossRefPubMedGoogle Scholar
  18. Kajinami K, Koizumi J, Ueda K, Miyamoto S, Takegoshi T, Mabuchi H (2000) Effects of NK-104, a new hydroxymethylglutaryl-coenzyme reductase inhibitor, on low-density lipoprotein cholesterol in heterozygous familial hypercholesterolemia. Hokuriku NK-104 Study Group. Am J Cardiol 85:178–183CrossRefPubMedGoogle Scholar
  19. Katsumoto M, Shingu T, Kuwashima R, Nakata A, Nomura S, Chayama K (2005) Biphasic effect of HMG-CoA reductase inhibitor, pitavastatin, on vascular endothelial cells and angiogenesis. Circ J 69:1547–1555CrossRefPubMedGoogle Scholar
  20. Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, Okada Y, Ikeda E (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol 170:1389–1397CrossRefPubMedGoogle Scholar
  21. Kuhlmann CR, Lessmann V, Luhmann HJ (2006) Fluvastatin stabilizes the blood-brain barrier in vitro by nitric oxide-dependent dephosphorylation of myosin light chains. Neuropharmacology 51:907–913CrossRefPubMedGoogle Scholar
  22. Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135PubMedGoogle Scholar
  23. Masamura K, Oida K, Kanehara H, Suzuki J, Horie S, Ishii H, Miyamori I (2003) Pitavastatin-induced thrombomodulin expression by endothelial cells acts via inhibition of small G proteins of the Rho family. Arterioscler Thromb Vasc Biol 23:512–517CrossRefPubMedGoogle Scholar
  24. Miyoshi J, Takai Y (2005) Molecular perspective on tight-junction assembly and epithelial polarity. Adv Drug Deliv Rev 57:815–855CrossRefPubMedGoogle Scholar
  25. Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194CrossRefPubMedGoogle Scholar
  26. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M (2007) Pericytes from brain microvessels strenghthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694CrossRefPubMedGoogle Scholar
  27. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263CrossRefPubMedGoogle Scholar
  28. Nassief A, Marsh JD (2008) Statin therapy for stroke prevention. Stroke 39:1042–1048CrossRefPubMedGoogle Scholar
  29. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660CrossRefPubMedGoogle Scholar
  30. Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB (2002) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res 91:143–150CrossRefPubMedGoogle Scholar
  31. Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 93:279–289CrossRefPubMedGoogle Scholar
  32. Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, Simokawa H, Kaibuchi K, Ikezu T (2006) Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encehalitis (HIV). Blood 107:4770–4780CrossRefPubMedGoogle Scholar
  33. Prasad R, Giri S, Nath N, Singh I, Singh AK (2005) Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-kappa B pathway by lovastatin limits endothelial-monocyte cell interaction. J Neurochem 94:204–214CrossRefPubMedGoogle Scholar
  34. Rezaie-Majd A, Maca T, Bucek RA, Valent P, Muller MR, Husslein P, Kashanipour A, Minar E, Baghestanian M (2002) Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 22:1194–1199CrossRefPubMedGoogle Scholar
  35. Saito Y, Yamada N, Teramoto T, Itakura H, Hata Y, Nakaya N, Mabuchi H, Tushima M, Sasaki J, Ogawa N, Goto Y (2002) A randomized, double-blind trial comparing the efficacy and safety of pitavastatin versus pravastatin in patients with primary hypercholesterolemia. Atherosclerosis 162:373–379CrossRefPubMedGoogle Scholar
  36. Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219CrossRefPubMedGoogle Scholar
  37. Schonbeck U, Libby P (2004) Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation 109:II18–II26CrossRefPubMedGoogle Scholar
  38. Soma T, Chiba H, Kato-Mori Y, Wada T, Yamashita T, Kojima T, Sawada N (2004) Thr (207) of claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP. Exp Cell Res 300:202–212CrossRefPubMedGoogle Scholar
  39. Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429CrossRefPubMedGoogle Scholar
  40. Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592PubMedGoogle Scholar
  41. Yamamoto M, Ramirez SH, Sato S, Kiyota T, Cerny RL, Kaibuchi K, Persidsky Y, Ikezu T (2008) Phosphorylation of caludin-5 and occluding by Rho kinase in brain endothelial cells. Am J Pathol 172:521–533CrossRefPubMedGoogle Scholar
  42. Youdim KA, Avdeef A, Abbott NJ (2003) In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov Today 8:997–1003CrossRefPubMedGoogle Scholar
  43. Zlokovic BV (2008) The blood–brain barrier in health and neurodegenerative disorders. Neuron 57:178–201CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yoichi Morofuji
    • 1
  • Shinsuke Nakagawa
    • 2
    • 3
  • Gohei So
    • 1
  • Takeshi Hiu
    • 1
  • Shoji Horai
    • 2
  • Kentaro Hayashi
    • 1
  • Kunihiko Tanaka
    • 2
  • Kazuhiko Suyama
    • 1
  • Maria A. Deli
    • 3
    • 4
  • Izumi Nagata
    • 1
  • Masami Niwa
    • 2
    • 3
  1. 1.Department of NeurosurgeryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
  2. 2.Department of PharmacologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
  3. 3.BBB Laboratory, PharmaCo-Cell Co., Ltd.NagasakiJapan
  4. 4.Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center, Hungarian Academy of SciencesSzegedHungary

Personalised recommendations