Advertisement

Cellular and Molecular Neurobiology

, Volume 30, Issue 1, pp 13–21 | Cite as

MDMA (Ecstasy) Decreases the Number of Neurons and Stem Cells in Embryonic Cortical Cultures

  • Anna M. S. Kindlundh-Högberg
  • Chris Pickering
  • Grzegorz Wicher
  • David Hobér
  • Helgi B. Schiöth
  • Åsa Fex Svenningsen
Original Paper

Abstract

Ecstasy, 3,4-methylenedioxymetamphetamine (MDMA), is a recreational drug used among adolescents, including young pregnant women. MDMA passes the placental barrier and may therefore influence fetal development. The aim was to investigate the direct effect of MDMA on cortical cells using dissociated CNS cortex of rat embryos, E17. The primary culture was exposed to a single dose of MDMA and collected 5 days later. MDMA caused a dramatic, dose-dependent (100 and 400 μM) decrease in nestin-positive stem cell density, as well as a significant reduction (400 μM) in NeuN-positive cells. By qPCR, MDMA (200 μM) caused a significant decrease in mRNA expression of the 5HT3 receptor, dopamine D1 receptor, and glutamate transporter EAAT2-1, as well as an increase in mRNA levels of the NMDA NR1 receptor subunit and the 5HT1A receptor. In conclusion, MDMA caused a marked reduction in stem cells and neurons in embryonic cortical primary cell cultures, which was accompanied by changes in mRNA expression of specific receptors and transporters for glutamatergic and monoaminergic neurotransmitters.

Keywords

MDMA Cell culture Cortex Embryos Neural stem cell Cell death mRNA 5HT3 receptor Dopamine D1 receptor Glutamate transporter 

Notes

Acknowledgments

This work was supported by the Swedish Research Council (VR-medicin), the Alcohol Research Council of the Swedish Alcohol Retailing Monopoly (Systembolaget), Gyllenstiernska Krapperupsstiftelsen, Åhlen and Magn. Bergvalls stiftelser, Tore Nilson foundation, and Svenska Läkaresällskapet. Drs. Anna Kindlundh-Högberg and Grzegorz Wicher were supported by the Swedish Brain Foundation (Hjärnfonden). Dr. Chris Pickering was supported first by the AFA Insurance grant for Biomedical Alcohol Research and then by the Swedish Brain Foundation (Hjärnfonden).

References

  1. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152CrossRefPubMedGoogle Scholar
  2. Berger UV, DeSilva TM, Chen W, Rosenberg PA (2005) Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. J Comp Neurol 492:78–89CrossRefPubMedGoogle Scholar
  3. Blessing WW, Seaman B (2003) 5-hydroxytryptamine(2A) receptors regulate sympathetic nerves constricting the cutaneous vascular bed in rabbits and rats. Neuroscience 117:939–948CrossRefPubMedGoogle Scholar
  4. Bortolozzi A, Diaz-Mataix L, Scorza MC, Celada P, Artigas F (2005) The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem 95:1597–1607CrossRefPubMedGoogle Scholar
  5. Campbell NG, Koprich JB, Kanaan NM, Lipton JW (2006) MDMA administration to pregnant Sprague-Dawley rats results in its passage to the fetal compartment. Neurotoxicol Teratol 28:459–465CrossRefPubMedGoogle Scholar
  6. Capela JP, Meisel A, Abreu AR, Branco PS, Ferreira LM, Lobo AM, Remiao F, Bastos ML, Carvalho F (2006a) Neurotoxicity of Ecstasy metabolites in rat cortical neurons, and influence of hyperthermia. J Pharmacol Exp Ther 316:53–61CrossRefPubMedGoogle Scholar
  7. Capela JP, Ruscher K, Lautenschlager M, Freyer D, Dirnagl U, Gaio AR, Bastos ML, Meisel A, Carvalho F (2006b) Ecstasy-induced cell death in cortical neuronal cultures is serotonin 2A-receptor-dependent and potentiated under hyperthermia. Neuroscience 139:1069–1081CrossRefPubMedGoogle Scholar
  8. Capela JP, Fernandes E, Remiao F, Bastos ML, Meisel A, Carvalho F (2007) Ecstasy induces apoptosis via 5-HT(2A)-receptor stimulation in cortical neurons. Neurotoxicology 28:868–875CrossRefPubMedGoogle Scholar
  9. Carboni E, Acquas E, Leone P, Di Chiara G (1989) 5HT3 receptor antagonists block morphine- and nicotine- but not amphetamine-induced reward. Psychopharmacology (Berl) 97:175–178CrossRefGoogle Scholar
  10. Carlsson A (2006) The neurochemical circuitry of schizophrenia. Pharmacopsychiatry 39(Suppl 1):S10–S14CrossRefPubMedGoogle Scholar
  11. Cho KO, Kim SK, Rhee GS, Kwack SJ, Cho DH, Sung KW, Kim SY (2007) Chronic 3, 4-methylenedioxymethamphetamine treatment suppresses cell proliferation in the adult mouse dentate gyrus. Eur J Pharmacol 566:120–123CrossRefPubMedGoogle Scholar
  12. Chu T, Kumagai Y, DiStefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51:789–796CrossRefPubMedGoogle Scholar
  13. Crawford CA, Williams MT, Kohutek JL, Choi FY, Yoshida ST, McDougall SA, Vorhees CV (2006) Neonatal 3,4-methylenedioxymethamphetamine (MDMA) exposure alters neuronal protein kinase A activity, serotonin and dopamine content, and [35S]GTPgammaS binding in adult rats. Brain Res 1077:178–186CrossRefPubMedGoogle Scholar
  14. David HN, Ansseau M, Abraini JH (2005) Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of “intact” animals. Brain Res Brain Res Rev 50:336–360PubMedGoogle Scholar
  15. Detke MJ, Wieland S, Lucki I (1995) Blockade of the antidepressant-like effects of 8-OH-DPAT, buspirone and desipramine in the rat forced swim test by 5HT1A receptor antagonists. Psychopharmacology (Berl) 119:47–54CrossRefGoogle Scholar
  16. Galineau L, Belzung C, Kodas E, Bodard S, Guilloteau D, Chalon S (2005) Prenatal 3, 4-methylenedioxymethamphetamine (ecstasy) exposure induces long-term alterations in the dopaminergic and serotonergic functions in the rat. Brain Res Dev Brain Res 154:165–176CrossRefPubMedGoogle Scholar
  17. Gardner CR (1988) Potential use of drugs modulating 5HT activity in the treatment of anxiety. Gen Pharmacol 19:347–356PubMedGoogle Scholar
  18. Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3, 4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508CrossRefPubMedGoogle Scholar
  19. Gudelsky GA, Nash JF (1996) Carrier-mediated release of serotonin by 3, 4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions. J Neurochem 66:243–249PubMedCrossRefGoogle Scholar
  20. Heilig M, Egli M (2006) Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms. Pharmacol Ther 111:855–876CrossRefPubMedGoogle Scholar
  21. Hernandez-Rabaza V, Dominguez-Escriba L, Barcia JA, Rosel JF, Romero FJ, Garcia-Verdugo JM, Canales JJ (2006) Binge administration of 3, 4-methylenedioxymethamphetamine (“ecstasy”) impairs the survival of neural precursors in adult rat dentate gyrus. Neuropharmacology 51:967–973CrossRefPubMedGoogle Scholar
  22. Ho E, Karimi-Tabesh L, Koren G (2001) Characteristics of pregnant women who use ecstasy (3, 4-methylenedioxymethamphetamine). Neurotoxicol Teratol 23:561–567CrossRefPubMedGoogle Scholar
  23. Ho YJ, Pawlak CR, Guo L, Schwarting RK (2004) Acute and long-term consequences of single MDMA administration in relation to individual anxiety levels in the rat. Behav Brain Res 149:135–144CrossRefPubMedGoogle Scholar
  24. Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650CrossRefPubMedGoogle Scholar
  25. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311PubMedGoogle Scholar
  26. Kindlundh-Högberg AMS, Svenningsson P, Schioth HB (2006) Quantitative mapping shows that serotonin rather than dopamine receptor mRNA expressions are affected after repeated intermittent administration of MDMA in rat brain. Neuropharmacology 51:838–847CrossRefPubMedGoogle Scholar
  27. Kindlundh-Högberg AMS, Schioth HB, Svenningsson P (2007) Repeated intermittent MDMA binges reduce DAT density in mice and SERT density in rats in reward regions of the adolescent brain. Neurotoxicology 28:1158–1169CrossRefPubMedGoogle Scholar
  28. Kindlundh-Högberg AMS, Blomqvist A, Malki R, Schioth HB (2008) Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats. BMC Neurosci 9:39CrossRefPubMedGoogle Scholar
  29. Koch S, Galloway MP (1997) MDMA induced dopamine release in vivo: role of endogenous serotonin. J Neural Transm 104:135–146CrossRefPubMedGoogle Scholar
  30. Koprich JB, Campbell NG, Lipton JW (2003a) Neonatal 3, 4-methylenedioxymethamphetamine (ecstasy) alters dopamine and serotonin neurochemistry and increases brain-derived neurotrophic factor in the forebrain and brainstem of the rat. Brain Res Dev Brain Res 147:177–182CrossRefPubMedGoogle Scholar
  31. Koprich JB, Chen EY, Kanaan NM, Campbell NG, Kordower JH, Lipton JW (2003b) Prenatal 3, 4-methylenedioxymethamphetamine (ecstasy) alters exploratory behavior, reduces monoamine metabolism, and increases forebrain tyrosine hydroxylase fiber density of juvenile rats. Neurotoxicol Teratol 25:509–517CrossRefPubMedGoogle Scholar
  32. McElhatton PR, Bateman DN, Evans C, Pughe KR, Thomas SH (1999) Congenital anomalies after prenatal ecstasy exposure. Lancet 354:1441–1442CrossRefPubMedGoogle Scholar
  33. Mordenti J, Chappell W (1989) The use of interspecies scaling in toxicokinetics. In: Yacogi A, Kelley J, Batra V (eds) Toxicokinetics and new drug development. Pergamon Press, New York, pp 42–96Google Scholar
  34. Morton J (2005) Ecstasy: pharmacology and neurotoxicity. Curr Opin Pharmacol 5:79–86CrossRefPubMedGoogle Scholar
  35. Nichols DE (1986) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs 18:305–313PubMedGoogle Scholar
  36. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144CrossRefPubMedGoogle Scholar
  37. Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131CrossRefPubMedGoogle Scholar
  38. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515CrossRefPubMedGoogle Scholar
  39. Reye P, Sullivan R, Scott H, Pow DV (2002) Distribution of two splice variants of the glutamate transporter GLT-1 in rat brain and pituitary. Glia 38:246–255CrossRefPubMedGoogle Scholar
  40. Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 479:23–40CrossRefPubMedGoogle Scholar
  41. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725CrossRefPubMedGoogle Scholar
  42. Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 45:250–265CrossRefPubMedGoogle Scholar
  43. Stumm G, Schlegel J, Schafer T, Wurz C, Mennel HD, Krieg JC, Vedder H (1999) Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. Faseb J 13:1065–1072PubMedGoogle Scholar
  44. Sun L, Shipley MT, Lidow MS (2000) Expression of NR1, NR2A-D, and NR3 subunits of the NMDA receptor in the cerebral cortex and olfactory bulb of adult rat. Synapse 35:212–221CrossRefPubMedGoogle Scholar
  45. Sveen ML, Knudsen GM, Aznar S (2004) No effect of MDMA (ecstasy) on cell death and 5-HT2A receptor density in organotypic rat hippocampal cultures. Neurosci Lett 362:6–9CrossRefPubMedGoogle Scholar
  46. Svenningsen AF, Shan WS, Colman DR, Pedraza L (2003) Rapid method for culturing embryonic neuron-glial cell cocultures. J Neurosci Res 72:565–573CrossRefGoogle Scholar
  47. Tanda G, Frau R, Di Chiara G (1995) Local 5HT3 receptors mediate fluoxetine but not desipramine-induced increase of extracellular dopamine in the prefrontal cortex. Psychopharmacology (Berl) 119:15–19CrossRefGoogle Scholar
  48. Ungerstedt U (1971) Stereotaxic mapping of monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48PubMedGoogle Scholar
  49. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034Google Scholar
  50. White SR, Duffy P, Kalivas PW (1994) Methylenedioxymethamphetamine depresses glutamate-evoked neuronal firing and increases extracellular levels of dopamine and serotonin in the nucleus accumbens in vivo. Neuroscience 62:41–50CrossRefPubMedGoogle Scholar
  51. Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R (1999) Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21:52S–60SPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Anna M. S. Kindlundh-Högberg
    • 1
  • Chris Pickering
    • 3
  • Grzegorz Wicher
    • 1
  • David Hobér
    • 1
  • Helgi B. Schiöth
    • 1
  • Åsa Fex Svenningsen
    • 1
    • 2
  1. 1.Department of NeuroscienceUppsala UniversityUppsalaSweden
  2. 2.IMB-Anatomy and NeurobiologyUniversity of Southern DenmarkOdenseDenmark
  3. 3.Department of Neuroscience & Physiology, Institute of Psychiatry and Neurochemistry, Addiction Biology UnitUniversity of GothenburgGothenburgSweden

Personalised recommendations