The Potential of the Brain: Plasticity Implications for De-Differentiation of Mature Astrocytes

  • Xing-gang Mao
  • Xiao-yan Xue
  • Xiang Zhang

Neural stem cells (NSCs) have been identified for many years, mainly based on their functional properties including extensive self-renewal and multi-differentiation potential (Reynolds and Weiss 1992). NSCs express many stem cell proteins such as nestin, SOX2, SSEA1, and CD133 et al., while confident markers that can specifically recognize these cells are lacking. It has long been suggested that GFAP-positive cells in the neurogenic area, subventricular zone (SVZ), are NSCs (Doetsch et al. 1999; Doetsch 2003b; Laywell et al. 2000; Sanai et al. 2004; Merkle and Alvarez-Buylla 2006), and one type of NSCs in subgranular zone (SGZ) is GFAP positive (Garcia et al. 2004). Recent studies focusing on micro-niche of SVZ NSCs further strengthened this idea, which implied GFAP cells in SVZ were genuine NSCs whose maintenance might depend on a complicated microenvironment (Doetsch 2003a; Shen et al. 2008; Tavazoie et al. 2008; Mirzadeh et al. 2008). These studies did not rule out the possibility...


Spinal Cord Injury Neural Precursor Nestin Expression Mature Astrocyte Brain Tumor Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alcantara LS, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK et al (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45–56. doi: 10.1016/j.ccr.2008.12.006 CrossRefGoogle Scholar
  2. Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B et al (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27:8654–8664. doi: 10.1523/JNEUROSCI.1615-07.2007 CrossRefPubMedGoogle Scholar
  3. Chang ML, Wu CH, Jiang-Shieh YF, Shieh JY, Wen CY (2007) Reactive changes of retinal astrocytes and muller glial cells in kainate-induced neuroexcitotoxicity. J Anat 210:54–65. doi: 10.1111/j.1469-7580.2006.00671.x CrossRefPubMedGoogle Scholar
  4. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925. doi: 10.1101/gad.903001 CrossRefPubMedGoogle Scholar
  5. Doetsch F (2003a) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550. doi: 10.1016/j.gde.2003.08.012 CrossRefPubMedGoogle Scholar
  6. Doetsch F (2003b) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134. doi: 10.1038/nn1144 CrossRefPubMedGoogle Scholar
  7. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, varez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716. doi: 10.1016/S0092-8674(00)80783-7 CrossRefPubMedGoogle Scholar
  8. Galli R, Borello U, Gritti A, Minasi MG, Bjornson C, Coletta M et al (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3:986–991. doi: 10.1038/79924 CrossRefPubMedGoogle Scholar
  9. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241. doi: 10.1038/nn1340 CrossRefPubMedGoogle Scholar
  10. Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23:862–871. doi: 10.1038/nbt1119 CrossRefPubMedGoogle Scholar
  11. Gurdon JB, Melton DA (2008) Nuclear reprogramming in cells. Science 322:1811–1815. doi: 10.1126/science.1160810 CrossRefPubMedGoogle Scholar
  12. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57. doi: 10.1038/75596 CrossRefPubMedGoogle Scholar
  13. Hunter KE, Hatten ME (1995) Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain. Proc Natl Acad Sci USA 92:2061–2065. doi: 10.1073/pnas.92.6.2061 CrossRefPubMedGoogle Scholar
  14. Kim JB, Sebastiano V, Wu G, rauzo-Bravo MJ, Sasse P, Gentile L et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419. doi: 10.1016/j.cell.2009.01.023 CrossRefPubMedGoogle Scholar
  15. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757. doi: 10.1126/science.289.5485.1754 CrossRefPubMedGoogle Scholar
  16. Lang B, Liu HL, Liu R, Feng GD, Jiao XY, Ju G (2004) Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience 128:775–783. doi: 10.1016/j.neuroscience.2004.06.033 CrossRefPubMedGoogle Scholar
  17. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97:13883–13888. doi: 10.1073/pnas.250471697 CrossRefPubMedGoogle Scholar
  18. Laywell ED, Kearns SM, Zheng T, Chen KA, Deng J, Chen HX et al (2005) Neuron-to-astrocyte transition: phenotypic fluidity and the formation of hybrid asterons in differentiating neurospheres. J Comp Neurol 493:321–333. doi: 10.1002/cne.20722 CrossRefPubMedGoogle Scholar
  19. Mao XG, Zhang X, Xue XY, Guo G, Wang P, Zhang W, Fei Z, Zhen HN, You SW, Yang H (2009a) Brain tumor stem like cells identified by neural stem cell marker CD15. Transl Oncol (in press)Google Scholar
  20. Mao XG, Zhang X, Zhen HN (2009b) Progress on potential strategies to target brain tumor stem cells. Cell Mol Neurobiol 29:141–155. doi: 10.1007/s10571-008-9310-1 CrossRefPubMedGoogle Scholar
  21. Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15:110–116. doi: 10.1038/nm.1863 CrossRefPubMedGoogle Scholar
  22. Merkle FT, Alvarez-Buylla A (2006) Neural stem cells in mammalian development. Curr Opin Cell Biol 18:704–709. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  23. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, varez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278. doi: 10.1016/j.stem.2008.07.004 CrossRefPubMedGoogle Scholar
  24. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710. doi: 10.1126/science.1553558 CrossRefPubMedGoogle Scholar
  25. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744. doi: 10.1038/nature02301 CrossRefPubMedGoogle Scholar
  26. Sanai N, varez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822. doi: 10.1056/NEJMra043666 CrossRefPubMedGoogle Scholar
  27. Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK et al (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300. doi: 10.1016/j.stem.2008.07.026 CrossRefPubMedGoogle Scholar
  28. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi: 10.1038/nature03128 CrossRefPubMedGoogle Scholar
  29. Tavazoie M, Van d,V, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B et al (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288. doi: 10.1016/j.stem.2008.07.025 CrossRefPubMedGoogle Scholar
  30. Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558PubMedGoogle Scholar
  31. Wurmser AE, Nakashima K, Summers RG, Toni N, D’Amour KA, Lie DC et al (2004) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430:350–356. doi: 10.1038/nature02604 CrossRefPubMedGoogle Scholar
  32. Yang H, Cheng XP, Li JW, Yao Q, Ju G (2009) De-differentiation response of cultured astrocytes to injury induced by scratch or conditioned culture medium of scratch-insulted astrocytes. Cell Mol Neurobiol (in press)Google Scholar
  33. Yokoyama A, Yang L, Itoh S, Mori K, Tanaka J (2004) Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. Glia 45:96–104. doi: 10.1002/glia.10306 CrossRefPubMedGoogle Scholar
  34. Yu T, Cao G, Feng L (2006) Low temperature induced de-differentiation of astrocytes. J Cell Biochem 99:1096–1107. doi: 10.1002/jcb.20979 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing HospitalThe Fourth Military Medical UniversityXi’anPeople’s Republic of China
  2. 2.Department of PharmacologyThe Fourth Military Medical UniversityXi’anPeople’s Republic of China

Personalised recommendations