Beyond the Rat Models of Human Neurodegenerative Disorders

Original Paper


The rat is a model of choice in biomedical research for over a century. Currently, the rat presents the best “functionally” characterized mammalian model system. Despite this fact, the transgenic rats have lagged behind the transgenic mice as an experimental model of human neurodegenerative disorders. The number of transgenic rat models recapitulating key pathological hallmarks of Alzheimer’s disease, Huntington’s disease, amyotrophic lateral sclerosis, or human tauopathies is still limited. The reason is that the transgenic rats remain more difficult to produce than transgenic mice. The gene targeting technology is not yet established in rats due to the lack of truly totipotent embryonic stem cells and cloning technology. This extremely powerful technique has given the mouse a clear advantage over the rat in generation of new transgenic models. Despite these limitations, transgenic rats have greatly expanded the range of potential experimental approaches. The large size of rats permits intrathecal administration of drugs, stem cell transplantation, serial sampling of the cerebrospinal fluid, microsurgical techniques, in vivo nerve recordings, and neuroimaging procedures. Moreover, the rat is routinely employed to demonstrate therapeutic efficacy and to assess toxicity of novel therapeutic compounds in drug development. Here we suggest that the rat constitutes a slightly underestimated but perspective animal model well-suited for understanding the mechanisms and pathways underlying the human neurodegenerative disorders.


Rat models Neurodegenerative disorders Transgenesis Alzheimer’s disease Tauopathies 



This work was supported by research grants APVV 0631-07 and LPP-0363-06.


  1. Agca C, Fritz JJ, Walker LC, Levey AI, Chan AWS, Lah JJ, Agca Y (2008) Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer’s disease: transgene and endogenous APP genes are regulated tissue-specifically. BMC Neurosci 9:28–29. doi: 10.1186/1471-2202-9-28 PubMedCrossRefGoogle Scholar
  2. Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St Lezin E, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21(1):76–83. doi: 10.1038/5013 PubMedCrossRefGoogle Scholar
  3. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Hubner N, Izsvák Z, Jacob HJ, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno C, Mullins J, Mullins L, Olsson T, Pravenec M, Riley L, Saar K, Serikawa T, Shull JD, Szpirer C, Twigger SN, Voigt B, Worley K (2008) Progress and prospects in rat genetics: a community view. Nat Genet 40(5):516–522. doi: 10.1038/ng.147 PubMedCrossRefGoogle Scholar
  4. Aoki M, Ogasawara M, Matsubara Y, Narisawa K, Nakamura S, Itoyama Y, Abe K (1993) Mild ALS in Japan associated with novel SOD mutation. Nat Genet 5:323–324. doi: 10.1038/ng1293-323 PubMedCrossRefGoogle Scholar
  5. Aoki M, Kato S, Nagai M, Itoyama Y (2005) Recent advances in motor neuron disease development of a rat model of amyotrophic lateral sclerosis expressing a human SOD1 transgene. Neuropathol 25:365–370. doi: 10.1111/j.1440-1789.2005.00611.x CrossRefGoogle Scholar
  6. Bagis H, Odaman Hg, Sagirkaya H, Dinnye A (2002) Production of transgenic mice from vitrified pronuclear-stage embryos. Mol Reprod Dev 61:173–179. doi: 10.1002/mrd.1144 PubMedCrossRefGoogle Scholar
  7. Bauer A, Zilles K, Matusch A, Holzmann C, Riess O, von Hörsten S (2005) Regional and subtype selective changes of neurotransmitter receptor density in a rat transgenic for the Huntington’s disease mutation. J Neurochem 94(3):639–650. doi: 10.1111/j.1471-4159.2005.03169.x PubMedCrossRefGoogle Scholar
  8. Bode FJ, Stephan M, Suhling H, Pabst R, Straub RH, Raber KA, Bonin M, Nguyen HP, Riess O, Bauer A, Sjoberg C, Petersén A, von Hörsten S (2008) Sex differences in a transgenic rat model of Huntington’s disease: decreased 17ss-estradiol levels correlate with reduced numbers of DARPP32+ neurons in males. Hum Mol Genet 17(17):2595–2609. doi: 10.1093/hmg/ddn159 PubMedCrossRefGoogle Scholar
  9. Burns A, Byrne EJ, Maurer K (2002) Alzheimer’s disease. Lancet 360(9327):163–165. doi: 10.1016/S0140-6736(02)09420-5 PubMedCrossRefGoogle Scholar
  10. Canzian F (1997) Phylogenetics of the laboratory rat Rattus norvegicus. Genome Res 7(3):262–267. doi: 10.1101/gr.7.3.262 PubMedCrossRefGoogle Scholar
  11. Cao C, Temel Y, Blokland A, Ozena H, Steinbusch HWM, Vlamings R, Nguyene HP, von Hörsten S, Schmitz C, Visser-Vandewalle V (2006) Progressive deterioration of reaction time performance and choreiform symptoms in a new Huntington’s disease transgenic rat model. Behav Brain Res 170:257–261. doi: 10.1016/j.bbr.2006.02.028 PubMedCrossRefGoogle Scholar
  12. Cha JHJ (2007) Finding diamonds in the rubble. Exp Neurol 205(1):1–4. doi: 10.1016/j.expneurol.2007.02.003 PubMedCrossRefGoogle Scholar
  13. Chang Kt, Ikeda A, Hayashi K, Furuhata Y, Nishihara M, Ohta A, Ogawa S, Takahashi M (1999) Production of transgenic rats and mice by the testis-mediated gene transfer. J Reprod Dev 45(1):29–36. doi: 10.1262/jrd.45.29 CrossRefGoogle Scholar
  14. Charreau B, Tesson L, Menoret S, Buscail J, Soulillou J-P, Anegon I (1997) Production of transgenic rats for human regulators of complement activation. Transplant Proc 29(3):1770. doi: 10.1016/S0041-1345(97)81999-9 PubMedCrossRefGoogle Scholar
  15. Clarke J, Thornell A, Corbett D, Soininen H, Hiltunen M, Jolkkonen J (2007) Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats. Eur J Neurosci 26(7):1845–1852. doi: 10.1111/j.1460-9568.2007.05807.x PubMedCrossRefGoogle Scholar
  16. Cozzi J, Fraichard A, Thiam K (2008) Use of genetically modified rat models for translational medicine. Drug Discov Today 13(11–12):488–494. doi: 10.1016/j.drudis.2008.03.021 PubMedCrossRefGoogle Scholar
  17. Dalsgaard T, Moldt B, Sharma N, Wolf G, Schmitz A, Pedersen JS, Mikkelsen JG (2008) Shielding of Sleeping Beauty DNA transposon-delivered transgene cassettes by heterologous insulators in early embryonal cells. Mol Ther 17:121–130. doi: 10.1038/mt.2008.224 PubMedCrossRefGoogle Scholar
  18. Dann CT (2007) New technology for an old favorite: lentiviral transgenesis and RNAi in rats. Transgenic Res 16:571–580. doi: 10.1007/s11248-007-9121-z PubMedCrossRefGoogle Scholar
  19. Dann CT, Alvarado AL, Hammer RE, Garbers DL (2006) Heritable and stable gene knockdown in rats. Proc Natl Acad Sci USA 103:11246–11251. doi: 10.1073/pnas.0604657103 PubMedCrossRefGoogle Scholar
  20. Delacourte A, Sergeant N, Champain D, Wattez A, Maurage CA, Lebert F, Pasquier F, David JP (2002) Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer’s disease. Neurology 59:398–407PubMedCrossRefGoogle Scholar
  21. Echeverria V, Ducatenzeiler A, Alhonen L, Janne J, Granta SM, Wandosell F, Muro A, Baralle F, Li H, Duff K, Szyf M, Cuello AC (2004) Rat transgenic models with a phenotype of intracellular Aβ accumulation in hippocampus and cortex. J Alzheimers Dis 6:209–219PubMedGoogle Scholar
  22. Fendrick SH, Xue QS, Streit WJ (2007) Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene. J Neuroinflammation 4:9. doi: 10.1186/1742-2094-4-9 PubMedCrossRefGoogle Scholar
  23. Filipiak WE, Saunders TL (2006) Advances in transgenic rat production. Transgenic Res 15:673–686. doi: 10.1007/s11248-006-9002-x PubMedCrossRefGoogle Scholar
  24. Flood DG, Lin YG, Lang DM, Trusko SP, Hirsch JD, Savage MJ, Scott RW, Howland DS (2007) A transgenic rat model of Alzheimer’s disease with extracellular Aβ deposition. Neurobiol Aging doi: 10.1016/j.neurobiolaging.2007.10.006
  25. Folkesson R, Malkiewicz K, Kloskowsk E, Nilsson T, Popova E, Bogdanovic N, Ganten U, Ganten D, Bader M, Winblad B, Benedikz E (2007) A transgenic rat expressing human APP with the Swedish Alzheimer’s disease mutation. Biochem Biophys Res Commun 358:777–782. doi: 10.1016/j.bbrc.2007.04.195 PubMedCrossRefGoogle Scholar
  26. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521. doi: 10.1038/nature02426 PubMedCrossRefGoogle Scholar
  27. Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27(11):2803–2820. doi: 10.1111/j.1460-9568.2008.06310.x PubMedCrossRefGoogle Scholar
  28. Gill TIII, Smith G, Wissler R, Kunz H (1989) The rat as an experimental animal. Science 245:269–276. doi: 10.1126/science.2665079 PubMedCrossRefGoogle Scholar
  29. Götz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9(7):532–544. doi: 10.1038/nrn2420 PubMedCrossRefGoogle Scholar
  30. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917. doi: 10.1073/pnas.83.13.4913 PubMedCrossRefGoogle Scholar
  31. Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 99(23):14931–14936. doi: 10.1073/pnas.222561399 PubMedCrossRefGoogle Scholar
  32. Herbik MA, Chrapusta SJ, Kowalczyk A, Grieb P (2006) Maintenance of the rat transgenic model of familial amyotrophic lateral sclerosis expressing human SOD1G93A mutation. Folia Neuropathol 44(3):149–153PubMedGoogle Scholar
  33. Hirabayashi M, Takahashi R, Ito K, Kashiwazaki N, Hirao M, Hirasawa K, Hochi S, Ueda M (2001) A comparative study on the integration of exogenous DNA into mouse, rat, rabbit, and pig genomes. Exp Anim 50:125–131. doi: 10.1538/expanim.50.125 PubMedCrossRefGoogle Scholar
  34. Hirabayashi M, Kato M, Aoto T, Sekimoto A, Ueda M, Miyoshi I, Kasai N, Hochi S (2002a) Offspring derived from intracytoplasmic injection of transgenic rat sperm. Transgenic Res 11:221–228. doi: 10.1023/A:1015210604906 CrossRefGoogle Scholar
  35. Hirabayashi M, Kato M, Aoto T, Ueda M, And Hochi S (2002b) Rescue of infertile transgenic rat lines by intracytoplasmic injection of cryopreserved round spermatids. Mol Reprod Dev 62:295–299. doi: 10.1002/mrd.10127 PubMedCrossRefGoogle Scholar
  36. Hirabayashi M, Kato M, Ishikawa A, Kaneko R, Yagi T, Hochi S (2005) Factors affecting production of transgenic rats by ICSI-mediated DNA transfer: effects of sonication and freeze-thawing of spermatozoa, rat strains for sperm and oocyte donors, and different constructs of exogenous DNA. Mol Reprod Dev 70(4):422–428. doi: 10.1002/mrd.20223 PubMedCrossRefGoogle Scholar
  37. Hirabayashi M, Kato M, Amemiya K, Hochi S (2008) Direct comparison between ICSI-mediated DNA transfer and pronuclear DNA microinjection for producing transgenic rats. Exp Anim 57(2):145–148. doi: 10.1538/expanim.57.145 PubMedCrossRefGoogle Scholar
  38. Houdebine LM (2005a) Use of transgenic animals to improve human health and animal production. Reprod Domest Anim 40:269–281. doi: 10.1111/j.1439-0531.2005.00596.x PubMedCrossRefGoogle Scholar
  39. Houdebine LM (2005b) Relations between animal transgenesis and reproduction. Reprod Nutr Dev 45:363–376. doi: 10.1051/rnd:2005027 PubMedCrossRefGoogle Scholar
  40. Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G, DeGennaro LJ, Cleveland DW, Rothstein JD (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA 99(3):1604–1609. doi: 10.1073/pnas.032539299 PubMedCrossRefGoogle Scholar
  41. Hrnkova M, Zilka N, Minichova Z, Koson P, Novak M (2007) Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res 1130(1):206–213. doi: 10.1016/j.brainres.2006.10.085 PubMedCrossRefGoogle Scholar
  42. Jacob JH (1999) Functional genomics and rat models. Genome Res 9:1013–1016. doi: 10.1101/gr.9.11.1013 PubMedCrossRefGoogle Scholar
  43. James M, Lindpaintner K (1997) Why map the rat? Trends Genet 13:171–173. doi: 10.1016/S0168-9525(97)01130-X PubMedCrossRefGoogle Scholar
  44. Jokic N, Ling YY, Ward RE, Michael-Titus AT, Priestley JV, Malaspina A (2007) Retinoid receptors in chronic degeneration of the spinal cord: observations in a rat model of amyotrophic lateral sclerosis. J Neurochem 103:1821–1833. doi: 10.1111/j.1471-4159.2007.04893.x PubMedCrossRefGoogle Scholar
  45. Kanatsu-Shinohara M, Kato M, Takehashi M, Morimoto H, Takashima S, Chuma S, Nakatsuji N, Hirabayashi M, Shinohara T (2008) Production of transgenic rats via lentiviral 1 transduction and xenogeneic transplantation of spermatogonial stem cells. Biol Reprod doi: 10.1095/biolreprod.108.071159
  46. Kantor O, Temel Y, Holzmann C, Raber K, Nguyen HP, Cao C, Türkoglu HO, Rutten BP, Visser-Vandewalle V, Steinbusch HW, Blokland A, Korr H, Riess O, von Hörsten S, Schmitz C (2006) Selective striatal neuron loss and alterations in behavior correlate with impaired striatal function in Huntington’s disease transgenic rats. Neurobiol Dis 22(3):538–547. doi: 10.1016/j.nbd.2005.12.014 PubMedCrossRefGoogle Scholar
  47. Kato M, Ishikawa A, Kaneko R, Yagi T, Hochi S, Hirabayashi M (2004) Production of transgenic rats by ooplasmic injection of spermatogenic cells exposed to exogenous DNA: a preliminary study. Mol Reprod Dev 69:153–158. doi: 10.1002/mrd.20161 PubMedCrossRefGoogle Scholar
  48. Kato S, Kato M, Abe Y, Matsumura T, Nishino T, Aoki M, Itoyama Y, Asayama K, Awaya A, Hirano A, Ohama E (2005) Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models. Acta Neuropathol 110:101–112. doi: 10.1007/s00401-005-1019-3 PubMedCrossRefGoogle Scholar
  49. Korenova M, Zilka N, Stozicka Z, Bugos O, Vanicky I, Novak M (2008) Neuroscale, the battery of behavioral tests with novel scoring system for phenotyping of transgenic rat model of tauopathy. J Neurosci Methods doi: 10.1016/j.jneumeth.2008.09.027
  50. Kosik KS, Shimura H (2005) Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 1739(2–3):298–310PubMedGoogle Scholar
  51. Koson P, Zilka N, Kovac A, Kovacech B, Korenova M, Filipcik P, Novak M (2008) Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. Eur J Neurosci 28(2):239–246. doi: 10.1111/j.1460-9568.2008.06329.x PubMedCrossRefGoogle Scholar
  52. Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vergiolu A (2006) Sperm mediated gene transfer. Reprod Fertil Dev 18(1–2):19–23. doi: 10.1071/RD05124 PubMedCrossRefGoogle Scholar
  53. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. doi: 10.1146/annurev.neuro.24.1.1121 PubMedCrossRefGoogle Scholar
  54. Liu L, Orozco IJ, Planel E, Wen Y, Bretteville A, Krishnamurthy P, Wang L, Herman M, Figueroa H, Yu WH, Arancio O, Duff K (2008) A transgenic rat that develops Alzheimer’s disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiol Dis 31(1):46–57. doi: 10.1016/j.nbd.2008.03.005 PubMedCrossRefGoogle Scholar
  55. Lladó J, Haenggeli C, Pardo A, Wong V, Benson L, Coccia C, Rothstein JD, Shefner JM, Maragakis NJ (2006) Degeneration of respiratory motor neurons in the SOD1 G93A transgenic rat model of ALS. Neurobiol Dis 21(1):110–118. doi: 10.1016/j.nbd.2005.06.019 PubMedCrossRefGoogle Scholar
  56. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872. doi: 10.1126/science.1067081 PubMedCrossRefGoogle Scholar
  57. Lu B, Geurts AM, Poirier C, Petit DC, Harrison W, Overbeek PA, Bishop CE (2007) Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system. Mamm Genome 18:338–346. doi: 10.1007/s00335-007-9025-5 PubMedCrossRefGoogle Scholar
  58. Ludemann N, Clement A, Hans VH, Leschik J, Behl C, Brandt R (2005) O-Glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J Biol Chem 280(36):31648–31658. doi: 10.1074/jbc.M504395200 PubMedCrossRefGoogle Scholar
  59. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82(12):4245–4249. doi: 10.1073/pnas.82.12.4245 PubMedCrossRefGoogle Scholar
  60. Matsumoto A, Okada Y, Nakamichi M, Nakamura M, Toyama Y, Sobue G, Nagai M, Aoki M, Itoyama Y, Okano H (2006) Disease progression of human SOD1 (G93A) transgenic ALS model rats. J Neurosci Res 83(1):119–133. doi: 10.1002/jnr.20708 PubMedCrossRefGoogle Scholar
  61. Michalkiewicz M, Michalkiewicz T, Geurts AM, Roman RJ, Slocum GR, Singer O, Weihrauch D, Greene AS, Kaldunski M, Verma IM, Jacob HJ, Cowley AW Jr (2007) Efficient transgenic rat production by a lentiviral vector. Am J Physiol Heart Circ Physiol 293(1):881–894. doi: 10.1152/ajpheart.00060.2007 CrossRefGoogle Scholar
  62. Miskey C, Izsvák Z, Kawakamic K, Ivicsa Z (2005) DNA transposons in vertebrate functional genomics. Cell Mol Life Sci 62:629–641. doi: 10.1007/s00018-004-4232-7 PubMedCrossRefGoogle Scholar
  63. Moreira PN, Giraldo P, Cozar P, Pozueta J, Jiménez A, Montoliu L, Gutiérrez-Adán A (2004) Efficient generation of transgenic mice with intact yeast artificial chromosome by intracytoplasmic sperm injection. Biol Reprod 71(6):1943–1947. doi: 10.1095/biolreprod.104.032904 PubMedCrossRefGoogle Scholar
  64. Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344(6566):541–544. doi: 10.1038/344541a0 PubMedCrossRefGoogle Scholar
  65. Nagai M, Aoki M, Miyoshi I, Kato M, Pasinelli P, Kasai N, Brown RH Jr, Itoyama Y (2001) Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J Neurosci 21(23):9246–9254PubMedGoogle Scholar
  66. Nguyene HP, Kobbe P, Rahne H, Worpell T, Jager B, Stephan M, Pabst R, Holzmann C, Riess O, Korr H, Kantor O, Petrasch-Parwez E, Wetzel R, Osmand A, von Hörsten S (2006) Behavioral abnormalities precede neuropathological markers in rats transgenic for Huntington’s disease. Hum Mol Genet 21:3177–3194. doi: 10.1093/hmg/ddl394 CrossRefGoogle Scholar
  67. Novak M, Jakes R, Edwards PC, Milstein C, Wischik CM (1991) Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci USA 88:5837–5841. doi: 10.1073/pnas.88.13.5837 PubMedCrossRefGoogle Scholar
  68. Novak M, Kabat J, Wischik CM (1993) Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J 12:365–370PubMedGoogle Scholar
  69. Petrasch-Parwez E, Nguyen HP, Löbbecke-Schumacher M, Habbes HW, Wieczorek S, Riess O, Andres KH, Dermietzel R, Von Hörsten S (2007) Cellular and subcellular localization of Huntington aggregates in the brain of a rat transgenic for Huntington disease. J Comp Neurol 501(5):716–730. doi: 10.1002/cne.21272 PubMedCrossRefGoogle Scholar
  70. Pfeifer A (2004) Lentiviral transgenesis. Transgenic Res 13(6):513–522. doi: 10.1007/s11248-004-2735-5 PubMedCrossRefGoogle Scholar
  71. Popova E, Krivokharchenko A, Ganten D, Bader M (2002) Comparison between PMSG- and FSH-induced superovulation for the generation of transgenic rats. Mol Reprod Dev 63:177–182. doi: 10.1002/mrd.10173 PubMedCrossRefGoogle Scholar
  72. Popova E, Krivokharchenko A, Ganten D, Bader M (2004) Efficiency of transgenic rat production is independent of transgene-construct and overnight embryo culture. Theriogenology 61(7–8):1441–1453. doi: 10.1016/j.theriogenology.2003.08.006 PubMedCrossRefGoogle Scholar
  73. Popova E, Bader M, Krivokharchenko A (2005) Strain differences in superovulatory response, embryo development and efficiency of transgenic rat production. Transgenic Res 14:729–738. doi: 10.1007/s11248-005-7218-9 PubMedCrossRefGoogle Scholar
  74. Popova E, Rentzsch B, Bader M, Krivokharchenko A (2008) Generation and characterization of a GFP transgenic rat line for embryological research. Transgenic Res 17:955–963. doi: 10.1007/s11248-008-9189-0 PubMedCrossRefGoogle Scholar
  75. Pravenec M, Landa V, Zidek V, Musilova A, Kren V, Kazdova L, Aitman TJ, Glazier AM, Ibrahimi A, Abumrad NA, Qi N, Wang JM, St Lezin EM, Kurtz TW (2001) Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet 27(2):156–158. doi: 10.1038/84777 PubMedCrossRefGoogle Scholar
  76. Pravenec M, Kren V, Krenová D, Zídek V, Simáková M, Musilová A, Vorlícek J, Lezin ES, Kurtz TW (2003) Genetic isolation of quantitative trait loci for blood pressure development and renal mass on chromosome 5 in the spontaneously hypertensive rat. Physiol Res 52(3):285–289PubMedGoogle Scholar
  77. Pravenec M, Churchill PC, Churchill MC, Viklicky O, Kazdova L, Aitman TJ, Petretto E, Hubner N, Wallace CA, Zimdahl H, Zidek V, Landa V, Dunbar J, Bidani A, Griffin K, Qi N, Maxova M, Kren V, Mlejnek P, Wang J, Kurtz TW (2008) Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet 40(8):952–954. doi: 10.1038/ng.164 PubMedCrossRefGoogle Scholar
  78. Rafałowska J, Fidziańska A, Dziewulska D, Gadamski R, Ogonowska W, Grieb P (2006) Progression of morphological changes within CNS in a transgenic rat model of familial amyotrophic lateral sclerosis. Folia Neuropathol 44(3):162–174PubMedGoogle Scholar
  79. Report of the NIH Rat Model Priority Meeting 1999
  80. Report of the NIH Rat Model Repository Workshop 1999
  81. Robl JM, Wang Z, Kasinathan P, Kuroiwa Y (2007) Transgenic animal production and animal biotechnology. Theriogenology 67:127–133. doi: 10.1016/j.theriogenology.2006.09.034 PubMedCrossRefGoogle Scholar
  82. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62. doi: 10.1038/362059a0 PubMedCrossRefGoogle Scholar
  83. Ruiz-Opazo N, Kosik KS, Lopez LV, Bagamasbad P, Ponce LR, Herrera VL (2004) Attenuated hippocampus-dependent learning and memory decline in transgenic TgAPPswe Fischer-344 rats. Mol Med 10(1–6):36–44PubMedGoogle Scholar
  84. Ryu BY, Orwig KE, Oatley JM, Lin CC, Chang LJ, Avarbock MR, Brinster RL (2007) Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells. J Androl 28(2):353–360. doi: 10.2164/jandrol.106.001511 PubMedCrossRefGoogle Scholar
  85. Smith K, Spadafora C (2005) Sperm-mediated gene transfer: applications and implications. Bioessays 27:551–562. doi: 10.1002/bies.20211 PubMedCrossRefGoogle Scholar
  86. Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2(3):423–437. doi: 10.1602/neurorx.2.3.423 PubMedCrossRefGoogle Scholar
  87. Suzuki M, Tork C, Shelley B, Mchugh J, Wallace K, Klein SM, Lindstrom MJ, Svendsen CN (2007) Sexual dimorphism in disease onset and progression of a rat model of ALS. Amyotroph Lateral Scler 8:20–25. doi: 10.1080/17482960600982447 PubMedCrossRefGoogle Scholar
  88. Takahashi R, Ito K, Fujiwara Y, Kodaira K, Kodaira K, Hirabayashi M, Ueda M (2000) Generation of transgenic rats with YACs and BACs: preparation procedures and integrity of microinjected DNA. Exp Anim 49(3):229–233. doi: 10.1538/expanim.49.229 PubMedCrossRefGoogle Scholar
  89. Temel Y, Cao C, Vlamings R, Blokland A, Ozen H, Steinbusch HWM, Michelsen KM, von Hörsten S, Schmitz C, Visser-Vandewalle V (2006) Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington’s disease. Neurosci Lett 406:138–141. doi: 10.1016/j.neulet.2006.07.036 PubMedCrossRefGoogle Scholar
  90. Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, Anegon I (2005) Transgenic modifications of the rat genome. Transgenic Res 14:531–546. doi: 10.1007/s11248-005-5077-z PubMedCrossRefGoogle Scholar
  91. Thonhoff JR, Jordan PM, Karam JR, Bassett BL, Wu P (2007) Identification of early disease progression in an ALS rat model. Neurosci Lett 415:264–268. doi: 10.1016/j.neulet.2007.01.028 PubMedCrossRefGoogle Scholar
  92. Tomanin R, Scarpa M (2004) Why do we need new gene therapy viral vectors? Characteristic, limitations and future perspectives of viral vector transduction. Curr Gene Ther 4:57–372Google Scholar
  93. Turner BJ, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85(1):94–134. doi: 10.1016/j.pneurobio.2008.01.001 PubMedCrossRefGoogle Scholar
  94. Turner BJ, Atkin JD, Farg MA, Zang DW, Rembach A, Lopes EC, Patch JD, Hill AF, Cheema SS (2005) Impaired extracellular secretion of mutant superoxide dismutase 1 associates with neurotoxicity in familial amyotrophic lateral sclerosis. J Neurosci 25(1):108–117. doi: 10.1523/JNEUROSCI.4253-04.2005 PubMedCrossRefGoogle Scholar
  95. van den Brandt J, Wang D, Kwon S-H, Heinkelein M, Reichardt HM (2004) Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 39(2):94–99PubMedCrossRefGoogle Scholar
  96. Vermeiren C, de Hemptinne I, Vanhoutte N, Tilleux S, Maloteaux JM, Hermans E (2006) Loss of metabotropic glutamate receptor-mediated regulation of glutamate transport in chemically activated astrocytes in a rat model of amyotrophic lateral sclerosis. J Neurochem 96:719–731. doi: 10.1111/j.1471-4159.2005.03577.x PubMedCrossRefGoogle Scholar
  97. von Hörsten S, Schmitt I, Nguyen HP, Holzmann C et al (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12(6):617–624CrossRefGoogle Scholar
  98. Wall RJ (1999) Sperm-mediated gene transfer: advances in sperm cell research and applications. Transgenic Res 8(4):313–315PubMedCrossRefGoogle Scholar
  99. Wall RJ (2002) New gene transfer methods. Theriogenology 57(1):189–201PubMedCrossRefGoogle Scholar
  100. Winkler C, Gil JMAC, Araujo IM, Riess O, Skripuletz T, von Hörsten S, Petersen A (2006) Normal sensitivity to excitotoxicity in a transgenic Huntington’s disease rat. Brain Res Bull 69:306–310PubMedCrossRefGoogle Scholar
  101. Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988) Isolation of a fragment of tau derived from the core of paired helical filament of Alzheimer’s disease. Proc Natl Acad Sci USA 85:4506–4510PubMedCrossRefGoogle Scholar
  102. Xie Y, Weydt P, Howland DS, Kliot M, Möller T (2004) Inflammatory mediators and growth factors in the spinal cord of G93A SOD1 rats. Neuroreport 15(16):2513–2516. doi: 10.1097/00001756-200411150-00016 PubMedCrossRefGoogle Scholar
  103. Yin HZ, Tang DT, Weiss JH (2007) Intrathecal infusion of a Ca2+-permeable AMPA channel blocker slows loss of both motor neurons and of the astrocyte glutamate transporter, GLT-1 in a mutant SOD1 rat model of ALS. Exp Neurol 207:177–185. doi: 10.1016/j.expneurol.2007.07.011 PubMedCrossRefGoogle Scholar
  104. Zilka N, Filipcik P, Koson P, Fialova L, Skrabana R, Zilkova M, Rolkova G, Kontsekova E, Novak M (2006) Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580(15):3582–3588PubMedCrossRefGoogle Scholar
  105. Zilka N, Kontsekova E, Novak M (2008) Chaperone-like antibodies targeting misfolded tau protein: new vistas in the immunotherapy of neurodegenerative foldopathies. J Alzheimers Dis 15(2):169–179PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of NeuroimmunologySlovak Academy of Sciences, AD CentreBratislavaSlovak Republic
  2. 2.Axon-Neuroscience GmbHViennaAustria
  3. 3.Laboratory of Biomedical Microbiology and ImmunologyUniversity of Veterinary MedicineKosiceSlovak Republic

Personalised recommendations