Advertisement

Cellular and Molecular Neurobiology

, Volume 29, Issue 6–7, pp 821–825 | Cite as

Postconditioning and Anticonditioning: Possibilities to Interfere to Evoked Apoptosis

  • Jozef Burda
  • Viera Danielisová
  • Miroslava Némethová
  • Miroslav Gottlieb
  • Petra Kravčuková
  • Iveta Domoráková
  • Eva Mechírová
  • Rastislav Burda
Original Paper

Abstract

The aim of this study was to validate the ability of postconditioning, used 2 days after kainate intoxication, to protect selectively vulnerable hippocampal CA1 neurons against delayed neuronal death. Kainic acid (8 mg/kg, i.p.) was used to induce neurodegeneration of pyramidal CA1 neurons in rat hippocampus. Fluoro Jade B, the specific marker of neurodegeneration, and NeuN, a specific neuronal marker were used for visualization of changes 7 days after intoxication without and with delayed postconditioning (norepinephrine, 3.1 μmol/kg i.p., 2 days after kainate administration) and anticonditioning (Extract of Ginkgo biloba, 40 mg/kg p.o used simultaneously with kainate). Morris water maze was used on 6th and 7th day after kainate to test learning and memory capabilities of animals. Our results confirm that postconditioning if used at right time and with optimal intensity is able to prevent delayed neuronal death initiated not only by ischemia but kainate intoxication, too. The protective effect of repeated stress–postconditioning was suppressed if extract of Ginkgo biloba (EGb 761, 40 mg/kg p.o.) has been administered together with kainic acid. It seems that combination of lethal stress and antioxidant treatment blocks the activation of endogenous protecting mechanism known as ischemic tolerance, aggravates neurodegeneration and, after repeated stress is able to cause cumulative damage. This observation could be very valuable in situation when the aim of treatment is elimination of unwanted cell population from the organism.

Keywords

Hippocampus CA1 Kainic acid Ischemia Neurodegeneration Postconditioning Anticonditioning Delayed neuronal death 

Notes

Acknowledgments

This work was sponsored by grants APVV LPP-0235-06, VEGA 2/0141/09 and 1/4237/07. We gratefully acknowledge the expert technical assistance of Viera Ujháziová, and Dana Jurušová.

References

  1. Burda J, Marsala M, Radonak J, Marsala J (1991) Graded postischemic reoxygenation ameliorates inhibition of cerebral cortical protein synthesis in dogs. J Cereb Blood Flow Metab 11:1001–1006PubMedGoogle Scholar
  2. Burda J, Gottlieb M, Vanicky I, Chavko M, Marsala J (1995) Short-term postischemic hypoperfusion improves recovery of protein synthesis in the rat brain cortex. Mol Chem Neuropathol 25:189–198. doi: 10.1007/BF02960912 PubMedCrossRefGoogle Scholar
  3. Burda J, Matiasova M, Gottlieb M, Danielisova V, Nemethova M, Garcia L, Salinas M, Burda R (2005) Evidence for a role of second pathophysiological stress in prevention of delayed neuronal death in the hippocampal CA1 region. Neurochem Res 30:1397–1405. doi: 10.1007/s11064-005-8510-z PubMedCrossRefGoogle Scholar
  4. Burda J, Danielisova V, Nemethova M, Gottlieb M, Matiasova M, Domorakova I, Mechirova E, Ferikova M, Salinas M, Burda R (2006) Delayed postconditionig initiates additive mechanism necessary for survival of selectively vulnerable neurons after transient ischemia in rat brain. Cell Mol Neurobiol 26:1139–1149. doi: 10.1007/s10571-006-9036-x CrossRefGoogle Scholar
  5. Danielisova V, Nemethova M, Gottlieb M, Burda J (2006) The changes in endogenous antioxidant enzyme activity after postconditioning. Cell Mol Neurobiol 26:1179–1189. doi: 10.1007/s10571-006-9034-z CrossRefGoogle Scholar
  6. Danielisova V, Gottlieb M, Nemethova M, Burda J (2008) Effects of bradykinin postconditioning on endogenous antioxidant enzyme activity after transient forebrain ischemia in rat. Neurochem Res 33:1057–1064. doi: 10.1007/s11064-007-9550-3 PubMedCrossRefGoogle Scholar
  7. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254. doi: 10.1016/S0166-2236(03)00071-7 PubMedCrossRefGoogle Scholar
  8. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448. doi: 10.1038/nrn1927 PubMedCrossRefGoogle Scholar
  9. Hrehorovska M, Burda J, Domorakova I, Mechirova E (2004) Effect of Tanakan on postischemic activity of protein synthesis machinery in the rat brain. Gen Physiol Biophys 23:457–465PubMedGoogle Scholar
  10. Kaminska B, Filipkowski RK, Biedermann IW, Konopka D, Nowicka D, Hetman M, Dabrowski M, Gorecki DC, Lukasiuk K, Szklarczyk AW, Kaczmarek L (1997) Kainate-evoked modulation of gene expression in rat brain. Acta Biochim Pol 44:781–789PubMedGoogle Scholar
  11. Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296. doi: 10.1097/00004647-200211000-00001 PubMedCrossRefGoogle Scholar
  12. Marsala M, Danielisova V, Chavko M, J M (1989) Improvement of energy state and basic modifications of neuropathological damage in rabbits as a result of graded postischemic spinal cord reoxygenation. Exp Neurol 105:93–103. doi: 10.1016/0014-4886(89)90176-3 PubMedCrossRefGoogle Scholar
  13. Meng X, Cleveland JC Jr, Rowland RT, Mitchell MB, Brown JM, Banerjee A, Harken AH (1996) Norepinephrine-induced sustained myocardial adaptation to ischemia is dependent on alpha 1-adrenoceptors and protein synthesis. J Mol Cell Cardiol 28:2017–2025. doi: 10.1006/jmcc.1996.0194 PubMedCrossRefGoogle Scholar
  14. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60. doi: 10.1016/0165-0270(84)90007-4 PubMedCrossRefGoogle Scholar
  15. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136PubMedGoogle Scholar
  16. Orendacova J, Marsala M, Marsala J (1991) The blood-brain barrier permeability in graded postischemic spinal cord reoxygenation in rabbits. Neurosci Lett 128:143–146. doi: 10.1016/0304-3940(91)90247-Q PubMedCrossRefGoogle Scholar
  17. Pignataro G, Meller R, Inoue K, Ordonez AN, Ashley MD, Xiong Z, Simon RP (2008) In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: ischemic postconditioning. J Cereb Blood Flow Metab 28:232–241. doi: 10.1038/sj.jcbfm.9600559 PubMedCrossRefGoogle Scholar
  18. Puisieux F, Deplanque D, Bulckaen H, Maboudou P, Gele P, Lhermitte M, Lebuffe G, Bordet R (2004) Brain ischemic preconditioning is abolished by antioxidant drugs but does not up-regulate superoxide dismutase and glutathion peroxidase. Brain Res 1027:30–37. doi: 10.1016/j.brainres.2004.08.067 PubMedCrossRefGoogle Scholar
  19. Riksen NP, Smits P, Rongen GA (2004) Ischaemic preconditioning: from molecular characterisation to clinical application-part I. Neth J Med 62:353–363PubMedGoogle Scholar
  20. Schurr A, Reid KH, Tseng MT, West C, Rigor BM (1986) Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res 374:244–248. doi: 10.1016/0006-8993(86)90418-X PubMedCrossRefGoogle Scholar
  21. Schwartz LM, Lagranha CJ (2006) Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol 290:H1011–H1018. doi: 10.1152/ajpheart.00864.2005 PubMedCrossRefGoogle Scholar
  22. Zagulska-Szymczak S, Filipkowski RK, Kaczmarek L (2001) Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem Int 38:485–501. doi: 10.1016/S0197-0186(00)00101-7 PubMedCrossRefGoogle Scholar
  23. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588PubMedGoogle Scholar
  24. Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 26:1114–1121. doi: 10.1038/sj.jcbfm.9600233 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jozef Burda
    • 1
  • Viera Danielisová
    • 1
  • Miroslava Némethová
    • 1
  • Miroslav Gottlieb
    • 1
  • Petra Kravčuková
    • 1
  • Iveta Domoráková
    • 2
  • Eva Mechírová
    • 2
  • Rastislav Burda
    • 3
  1. 1.Institute of Neurobiology, Slovak Academy of SciencesKosiceSlovakia
  2. 2.Faculty of Medicine, Department of Histology and EmbryologyP. J. Šafárik University in KošiceKosiceSlovakia
  3. 3.Faculty Hospital of L. PasteurKosiceSlovakia

Personalised recommendations