Cellular and Molecular Neurobiology

, Volume 29, Issue 4, pp 503–512 | Cite as

Effect of Gap Junction Blocker β-Glycyrrhetinic Acid on Taste Disk Cells in Frog

  • Toshihide Sato
  • Kazuhisa Nishishita
  • Yukio Okada
  • Kazuo Toda
Original Paper


A gap junction blocker, 18β-glycyrrhetinic acid (β-GA), increased the membrane resistance of Ia, Ib and II/III cells of frog taste disk by 50, 160, and 300 MΩ, respectively, by blocking the gap junction channels and hemichannels. The amplitudes of gustatory depolarizing potentials in the disk cells for 4 basic taste stimuli were reduced to 40–60% after intravenous injection of β-GA at 1.0 mg/kg. β-GA of 1.0 mg/kg did not affect the resting potentials and the reversal potentials for tastant-induced depolarizing potentials in any taste disk cells. The percentage of cells responding to each of 4 basic taste stimuli and varying numbers of 4 taste qualities did not differ between control and β-GA-treated taste disk cells. This implies that gustatory depolarizing response profiles for 4 basic taste stimuli were very similar in control and β-GA-treated taste disk cells. It is concluded that β-GA at 1.0 mg/kg reduced the amplitude of gustatory depolarizing potentials in taste disk cells by strongly blocking depolarizing currents flowing through the gap junction channels and hemichannels, but probably weakly affected the gustatory transduction mechanisms for 4 taste stimuli.


Frog taste disk cell Depolarizing response profile Gap junction blocker Gap junction hemichannel Membrane resistance increase 



This work was supported by Japan Society for the Promotion of Science (17570064).


  1. Akaike N, Noma A, Sato M (1976) Electrical responses of frog taste cells to chemical stimuli. J Physiol 254:87–107PubMedGoogle Scholar
  2. Bennett MV, Contreras JE, Bukauskas FF, Sáez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26:610–617. doi: 10.1016/j.tins.2003.09.008 PubMedCrossRefGoogle Scholar
  3. Böhmer C, Kirschner U, Wehner F (2001) 18-β-glycyrrhetinic acid (BGA) as an electrical uncoupler for intracellular recordings in confluent monolayer cultures. Pflugers Arch 442:688–692. doi: 10.1007/s004240100588 PubMedCrossRefGoogle Scholar
  4. Davidson JS, Baumgarten IM (1988) Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J Pharmacol Exp Ther 246:1104–1107PubMedGoogle Scholar
  5. Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14. doi: 10.1042/BJ20060175 PubMedCrossRefGoogle Scholar
  6. Ganong WF (2005) Review of medical physiology, 22nd edn. McGraw-Hill, New YorkGoogle Scholar
  7. Guan B-C, Si J-Q, Jiang Z-G (2007) Blockade of gap junction coupling by glycyrrhetinic acids in guinea pig cochlear artery: a whole-cell voltage- and current-clamp study. Br J Pharmacol 151:1049–1060. doi: 10.1038/sj.bjp.0707244 PubMedCrossRefGoogle Scholar
  8. Huang Y-J, Murayama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 104:6436–6441. doi: 10.1073/pnas.0611280104 PubMedCrossRefGoogle Scholar
  9. Jaeger CB, Hillman DE (1976) Morphology of gustatory organs. In: Linás R, Precht W (eds) Frog neurobiology. Springer, Berlin, pp 587–606Google Scholar
  10. Li JH-Y, Lindemann B (2003) Multi-photon microscopy of cell types in the viable taste disk of the frog. Cell Tissue Res 313:11–27. doi: 10.1007/s00441-003-0725-1 PubMedCrossRefGoogle Scholar
  11. Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61:829–913PubMedGoogle Scholar
  12. Miyamoto T, Okada Y, Sato T (1991) Voltage-gated membrane current of isolated bullfrog taste cells. Zool Sci 8:835–845Google Scholar
  13. Murray RG (1973) The ultrastructure of taste bud. In: Friedmann I (ed) The ultrastructure of sensory organs. North-Holland Publishing, Amsterdam, pp 1–39Google Scholar
  14. Okada Y, Miyamoto T, Sato T (1986) Contribution of the receptor and basolateral membranes to the resting potential of a frog taste cell. Jpn J Physiol 36:139–150. doi: 10.2170/jjphysiol.36.139 PubMedCrossRefGoogle Scholar
  15. Okada Y, Miyamoto T, Sato T (1992) The ionic basis of the receptor potential of frog taste cells induced by sugar stimuli. J Exp Biol 162:23–36PubMedGoogle Scholar
  16. Okada Y, Miyamoto T, Sato T (1993) Contribution of proton transporter to acid-induced receptor potential in frog taste cells. Comp Biochem Physiol A 105:725–728. doi: 10.1016/0300-9629(93)90274-8 Google Scholar
  17. Okada Y, Miyamoto T, Sato T (1994) Activation of a cation conductance by acetic acid in taste cells isolated from the bullfrog. J Exp Biol 187:19–32PubMedGoogle Scholar
  18. Osculati F, Sbarbati A (1995) The frog taste disc: a prototype of the vertebrate gustatory organ. Prog Neurobiol 46:351–399. doi: 10.1016/0301-0082(95)00006-H PubMedCrossRefGoogle Scholar
  19. Richter H-P, Avenet P, Mestres P, Lindemann B (1988) Gustatory receptors and neighbouring cells in the surface layer of an amphibian taste disc: in situ relationships and response to cell isolation. Cell Tissue Res 254:83–96. doi: 10.1007/BF00220020 CrossRefGoogle Scholar
  20. Rodriguez-Sinovas A, Cabestrero A, López D, Torre I, Morente M, Abellán A, Miró E, Ruiz-Meana M, Garcia-Dorado D (2007) The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog Biophys Mol Biol 94:219–232. doi: 10.1016/j.pbiomolbio.2007.03.003 PubMedCrossRefGoogle Scholar
  21. Sáez JC, Contreras JE, Bukauskas FF, Retamal MA, Bennett MV (2003) Gap junction hemichannels in astrocytes of the CNS. Acta Physiol Scand 179:9–22. doi: 10.1046/j.1365-201X.2003.01196.x PubMedCrossRefGoogle Scholar
  22. Sato T, Miyamoto T, Okada Y (1987) Latency of gustatory neural impulses initiated in frog tongue. Brain Res 424:333–342Google Scholar
  23. Sato T, Miyamoto T, Okada Y (2002) Slow potentials in taste cells induced by frog glossopharyngeal nerve stimulation. Chem Senses 27:367–374. doi: 10.1093/chemse/27.4.367 PubMedCrossRefGoogle Scholar
  24. Sato T, Nishishita K, Mineda T, Okada Y, Toda K (2007) Depression of gustatory receptor potential in frog taste cell by parasympathetic nerve-induced slow hyperpolarizing potential. Chem Senses 32:3–10. doi: 10.1093/chemse/bjl028 PubMedCrossRefGoogle Scholar
  25. Sato T, Nishishita K, Okada Y, Toda K (2008) Electrical properties and gustatory responses of various taste disk cells of frog fungiform papillae. Chem Senses 33:371–378. doi: 10.1093/chemse/bjn001 PubMedCrossRefGoogle Scholar
  26. Sato T, Okada Y, Miyamoto T (1995) Molecular mechanisms of gustatory transductions in frog taste cells. Prog Neurobiol 46:239–287. doi: 10.1016/0301-0082(95)00005-G PubMedCrossRefGoogle Scholar
  27. Sato T, Okada Y, Miyazaki T, Kato Y, Toda K (2005) Taste cell responses in the frog are modulated by parasympathetic efferent nerve fibers. Chem Senses 30:761–769. doi: 10.1093/chemse/bji068 PubMedCrossRefGoogle Scholar
  28. Sato T, Okada Y, Toda K (2004) Analysis of slow hyperpolarizing potentials in frog taste cells induced by glossopharyngeal nerve stimulation. Chem Senses 29:651–657. doi: 10.1093/chemse/bjh072 PubMedCrossRefGoogle Scholar
  29. Seta Y, Toyoshima K (1995) Three-dimensional structure of the gustatory cell in the mouse fungiform taste buds: a computer-assisted reconstruction from serial ultrathin sections. Anat Embryol (Berl) 191:83–88. doi: 10.1007/BF00186781 Google Scholar
  30. Suwabe T, Kitada Y (2004) Voltage-gated inward currents of morphologically identified cells of the frog taste disc. Chem Senses 29:61–73. doi: 10.1093/chemse/bjh006 PubMedCrossRefGoogle Scholar
  31. Takeda Y, Ward SM, Sanders KM, Koh SD (2005) Effects of the gap junction blocker glycyrrhetinic acid on gastrointestinal smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 288:G832–G841. doi: 10.1152/ajpgi.00389.2004 PubMedCrossRefGoogle Scholar
  32. Takeuchi H, Tsunenari T, Kurahashi T, Kaneko A (2001) Physiology of morphologically identified cells of the bullfrog fungiform papilla. NeuroReport 12:2957–2962. doi: 10.1097/00001756-200109170-00040 PubMedCrossRefGoogle Scholar
  33. Thorson TB (1964) The partitioning of body water in Amphibia. Physiol Zool 37:395–399Google Scholar
  34. Tomchik SM, Berg S, Kim JW, Chaudhari N, Roper SD (2007) Breadth of tuning and taste coding in mammalian taste buds. J Neurosci 27:10840–10848. doi: 10.1523/JNEUROSCI.1863-07.2007 PubMedCrossRefGoogle Scholar
  35. Witt M (1993) Ultrastructure of the taste disc in the red-bellied toad Bombina orientalis (Discoglossidae, Salientia). Cell Tissue Res 272:59–70. doi: 10.1007/BF00323571 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Toshihide Sato
    • 1
  • Kazuhisa Nishishita
    • 2
  • Yukio Okada
    • 1
  • Kazuo Toda
    • 1
  1. 1.Division of Integrative Sensory PhysiologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
  2. 2.Division of Oral PathopharmacologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan

Personalised recommendations