Cellular and Molecular Neurobiology

, Volume 29, Issue 2, pp 193–202 | Cite as

Role of STIM1 in Regulation of Store-Operated Ca2+ Influx in Pheochromocytoma Cells

  • Michael A. Thompson
  • Christina M. Pabelick
  • Y. S. Prakash
Original Paper


Changes in the local environment such as pH (acidosis/alkalosis), temperature (hypothermia/hyperthermia), and agonist (glutamate) can adversely affect neuronal function, and are important factors in clinical situations such as anesthesia and intensive care. Regulation of intracellular Ca2+ ([Ca2+]i) is key to neuronal function. Stromal interaction molecule (STIM1) has been recently recognized to trigger store-operated Ca2+ entry (SOCE), an important component of [Ca2+]i regulation. Using differentiated, fura-2 loaded rat pheochromocytoma (PC12) cells transfected with small interference RNA for STIM1 (or vehicle), we examined the role of STIM1 in SOCE sensitivity to temperature, pH, and glutamate. SOCE was triggered following endoplasmic reticulum depletion. Cells were washed and exposed to altered pH (6.0–8.0), altered temperature (34–40°C), or to glutamate. In non-transfected cells, SOCE was inhibited by acidosis or hypothermia, but increased with alkalosis and hyperthermia. Increasing glutamate concentrations progressively stimulated SOCE. STIM1 siRNA decreased SOCE at normal temperature and pH, and substantially decreased sensitivity to acidosis and hypothermia, eliminating the concentration-dependence to glutamate. Sensitivity of SOCE to these environmental parameters was less altered by decreased extracellular Ca2+ alone (with STIM1 intact). We conclude that STIM1 mediates exquisite susceptibility of SOCE to pH, temperature, and glutamate: factors that can adversely affect neuronal function under pathological conditions.


Capacitative calcium entry Hypothermia Hyperthermia Acidosis Alkalosis Glutamate Pheochromocytoma 



Supported by NIH grant 1 UL1 RR024150-01* (Mayo Clinic Clinical Research awards to YSP and CMP), Mayo Clinic Early Career Development Award (YSP), and a Clinical Innovator Award from the Flight Attendants Medical Research Institute (FAMRI).


  1. Ay B, Prakash YS, Pabelick CM, Sieck GC (2004) Store-operated Ca2+ entry in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L909–L917. doi: 10.1152/ajplung.00317.2003 PubMedCrossRefGoogle Scholar
  2. Ay B, Wallace D, Mantilla CB, Prakash YS (2005) Differential inhibition of neuronal Na+-Ca2+ exchange versus store-operated Ca2+ channels by volatile anesthetics in pheochromocytoma (PC12) cells. Anesthesiology 103:93–101. doi: 10.1097/00000542-200507000-00016 PubMedCrossRefGoogle Scholar
  3. Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N et al (2003) Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J Neurosci 23:7737–7741PubMedGoogle Scholar
  4. Barbara JG (2002) IP3-dependent calcium-induced calcium release mediates bidirectional calcium waves in neurones: functional implications for synaptic plasticity. Biochim Biophys Acta 1600:12–18PubMedGoogle Scholar
  5. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339. doi: 10.1016/j.cell.2007.11.039 PubMedCrossRefGoogle Scholar
  6. Chen X, Michaelis ML, Michaelis EK (1997) Effects of chronic ethanol treatment on the expression of calcium transport carriers and NMDA/glutamate receptor proteins in brain synaptic membranes. J Neurochem 69:1559–1569PubMedCrossRefGoogle Scholar
  7. Chinopoulos C, Gerencser AA, Doczi J, Fiskum G, Adam-Vizi V (2004) Inhibition of glutamate-induced delayed calcium deregulation by 2-APB and La3+ in cultured cortical neurones. J Neurochem 91:471–483. doi: 10.1111/j.1471-4159.2004.02732.x PubMedCrossRefGoogle Scholar
  8. Church J (1999) Effects of pH changes on calcium-mediated potentials in rat hippocampal neurons in vitro. Neuroscience 89:731–742. doi: 10.1016/S0306-4522(98)00344-3 PubMedCrossRefGoogle Scholar
  9. Church J, Baxter KA, McLarnon JG (1998) pH modulation of Ca2+ responses and a Ca2+-dependent K+ channel in cultured rat hippocampal neurones. J Physiol 511:119–132. doi: 10.1111/j.1469-7793.1998.119bi.x PubMedCrossRefGoogle Scholar
  10. Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54:676–690. doi: 10.1002/glia.20396 PubMedCrossRefGoogle Scholar
  11. Grigoriev I, Gouveia SM, van der Vaart B, Demmers J, Smyth JT, Honnappa S et al (2008) STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr Biol 18:177–182. doi: 10.1016/j.cub.2007.12.050 PubMedCrossRefGoogle Scholar
  12. Henzi V, MacDermott AB (1992) Characteristics and function of Ca2+-and inositol 1, 4, 5-trisphosphate-releasable stores of Ca2+ in neurons. Neuroscience 46:251–273. doi: 10.1016/0306-4522(92)90049-8 PubMedCrossRefGoogle Scholar
  13. Hisatsune C, Mikoshiba K (2005) Novel compartment implicated in calcium signaling—is it an induced coupling domain? Sci STKE 2005:pe53. doi: 10.1126/stke.3132005pe53 PubMedCrossRefGoogle Scholar
  14. Iftinca M, McKay BE, Snutch TP, McRory JE, Turner RW, Zamponi GW (2006) Temperature dependence of T-type calcium channel gating. Neuroscience 142:1031–1042. doi: 10.1016/j.neuroscience.2006.07.010 PubMedCrossRefGoogle Scholar
  15. Irving AJ, Collingridge GL (1998) A characterization of muscarinic receptor-mediated intracellular Ca2+ mobilization in cultured rat hippocampal neurones. J Physiol 511:747–759. doi: 10.1111/j.1469-7793.1998.747bg.x PubMedCrossRefGoogle Scholar
  16. Johnston D (1980) Voltage, temperature and ionic dependence of the slow outward current in Aplysia burst-firing neurones. J Physiol 298:145–157PubMedGoogle Scholar
  17. Kenyon JL, Goff HR (1998) Temperature dependencies of Ca2+ current, Ca2+-activated Cl current and Ca2+ transients in sensory neurones. Cell Calcium 24:35–48. doi: 10.1016/S0143-4160(98)90087-2 PubMedCrossRefGoogle Scholar
  18. Laskay G, Kalman K, Van Kerkhove E, Steels P, Ameloot M (2005) Store-operated Ca2+-channels are sensitive to changes in extracellular pH. Biochem Biophys Res Commun 337:571–579. doi: 10.1016/j.bbrc.2005.09.086 PubMedCrossRefGoogle Scholar
  19. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241. doi: 10.1016/j.cub.2005.05.055 PubMedCrossRefGoogle Scholar
  20. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306. doi: 10.1073/pnas.0702866104 PubMedCrossRefGoogle Scholar
  21. Lo KJ, Luk HN, Chin TY, Chueh SH (2002) Store depletion-induced calcium influx in rat cerebellar astrocytes. Br J Pharmacol 135:1383–1392. doi: 10.1038/sj.bjp.0704594 PubMedCrossRefGoogle Scholar
  22. Marchant JS (2005) Cellular signalling: STIMulating calcium entry. Curr Biol 15:R493–R495. doi: 10.1016/j.cub.2005.06.035 PubMedCrossRefGoogle Scholar
  23. Marumo M, Suehiro A, Kakishita E, Groschner K, Wakabayashi I (2001) Extracellular pH affects platelet aggregation associated with modulation of store-operated Ca2+ entry. Thromb Res 104:353–360. doi: 10.1016/S0049-3848(01)00374-7 PubMedCrossRefGoogle Scholar
  24. Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS et al (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, STIM1. J Biol Chem 281:24979–24990. doi: 10.1074/jbc.M604589200 PubMedCrossRefGoogle Scholar
  25. Metea MR, Newman EA (2006) Calcium signaling in specialized glial cells. Glia 54:650–655. doi: 10.1002/glia.20352 PubMedCrossRefGoogle Scholar
  26. Milani D, Malgaroli A, Guidolin D, Fasolato C, Skaper SD, Meldolesi J et al (1990) Ca2+ channels and intracellular Ca2+ stores in neuronal and neuroendocrine cells. Cell Calcium 11:191–199. doi: 10.1016/0143-4160(90)90070-B PubMedCrossRefGoogle Scholar
  27. Obukhov AG, Nowycky MC (2002) TRPC4 can be activated by G-protein-coupled receptors and provides sufficient Ca2+ to trigger exocytosis in neuroendocrine cells. J Biol Chem 277:16172–16178. doi: 10.1074/jbc.M111664200 PubMedCrossRefGoogle Scholar
  28. Paltauf-Doburzynska J, Graier WF (1997) Temperature dependence of agonist-stimulated Ca2+ signaling in cultured endothelial cells. Cell Calcium 21:43–51. doi: 10.1016/S0143-4160(97)90095-6 PubMedCrossRefGoogle Scholar
  29. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930PubMedGoogle Scholar
  30. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810. doi: 10.1152/physrev.00057.2003 PubMedCrossRefGoogle Scholar
  31. Putney JW Jr (2003) Capacitative calcium entry in the nervous system. Cell Calcium 34:339–344. doi: 10.1016/S0143-4160(03)00143-X PubMedCrossRefGoogle Scholar
  32. Putney JW Jr (2005) Capacitative calcium entry: sensing the calcium stores. J Cell Biol 169:381–382. doi: 10.1083/jcb.200503161 PubMedCrossRefGoogle Scholar
  33. Racay P, Kaplan P, Lehotsky J (1996) Control of Ca2+ homeostasis in neuronal cells. Gen Physiol Biophys 15:193–210PubMedGoogle Scholar
  34. Razani-Boroujerdi S, Partridge LD, Sopori ML (1994) Intracellular calcium signaling induced by thapsigargin in excitable and inexcitable cells. Cell Calcium 16:467–474. doi: 10.1016/0143-4160(94)90076-0 PubMedCrossRefGoogle Scholar
  35. Shah MJ, Meis S, Munsch T, Pape HC (2001) Modulation by extracellular pH of low-and high-voltage-activated calcium currents of rat thalamic relay neurons. J Neurophysiol 85:1051–1058PubMedGoogle Scholar
  36. Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G et al (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, STIM and TRP. Biochim Biophys Acta 1763:1147–1160. doi: 10.1016/j.bbamcr.2006.08.050 PubMedCrossRefGoogle Scholar
  37. Smyth JT, DeHaven WI, Bird GS, Putney JW Jr (2007) Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J Cell Sci 120:3762–3771. doi: 10.1242/jcs.015735 PubMedCrossRefGoogle Scholar
  38. Soboloff J, Spassova MA, Hewavitharana T, He LP, Xu W, Johnstone LS et al (2006) STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ entry. Curr Biol 16:1465–1470. doi: 10.1016/j.cub.2006.05.051 PubMedCrossRefGoogle Scholar
  39. Somasundaram B, Mahaut-Smith MP, Floto RA (1996) Temperature-dependent block of capacitative Ca2+ influx in the human leukemic cell line KU-812. J Biol Chem 271:26096–26104. doi: 10.1074/jbc.271.42.26096 PubMedCrossRefGoogle Scholar
  40. Storozhevykh T, Grigortsevich N, Sorokina E, Vinskaya N, Vergun O, Pinelis V et al (1998) Role of Na+/Ca2+ exchange in regulation of neuronal Ca2+ homeostasis requires re-evaluation. FEBS Lett 431:215–218. doi: 10.1016/S0014-5793(98)00758-3 PubMedCrossRefGoogle Scholar
  41. Taylor SC, Peers C (1999) Store-operated Ca2+ influx and voltage-gated Ca2+ channels coupled to exocytosis in pheochromocytoma (PC12) cells. J Neurochem 73:874–880. doi: 10.1046/j.1471-4159.1999.0730874.x PubMedCrossRefGoogle Scholar
  42. Taylor DM, Eger EI 2nd, Bickler PE (1999) Halothane, but not the nonimmobilizers perfluoropentane and 1, 2-dichlorohexafluorocyclobutane, depresses synaptic transmission in hippocampal CA1 neurons in rats. Anesth Analg 89:1040–1045. doi: 10.1097/00000539-199910000-00041 PubMedCrossRefGoogle Scholar
  43. Thayer SA, Usachev YM, Pottorf WJ (2002) Modulating Ca2+ clearance from neurons. Front Biosci 7:d1255–d1279. doi: 10.2741/thayer PubMedCrossRefGoogle Scholar
  44. Tombaugh GC, Somjen GG (1997) Differential sensitivity to intracellular pH among high- and low-threshold Ca2+ currents in isolated rat CA1 neurons. J Neurophysiol 77:639–653PubMedGoogle Scholar
  45. van Lunteren E, Elmslie KS, Jones SW (1993) Effects of temperature on calcium current of bullfrog sympathetic neurons. J Physiol 466:81–93PubMedGoogle Scholar
  46. Wayman CP, Gibson A, McFadzean I (1998) Depletion of either ryanodine-or IP3-sensitive calcium stores activates capacitative calcium entry in mouse anococcygeus smooth muscle cells. Pflugers Arch 435:231–239. doi: 10.1007/s004240050506 PubMedCrossRefGoogle Scholar
  47. Wedel B, Boyles RR, Putney JW Jr, Bird GS (2007) Role of the store-operated calcium entry proteins STIM1 and Orai1 in muscarinic cholinergic receptor-\ulated calcium oscillations in human embryonic kidney cells. J Physiol 579:679–689. doi: 10.1113/jphysiol.2006.125641 PubMedCrossRefGoogle Scholar
  48. Weirich J, Dumont L, Fleckenstein-Grun G (2004) Contribution of store-operated Ca2+ entry to pHo-dependent changes in vascular tone of porcine coronary smooth muscle. Cell Calcium 35:9–20. doi: 10.1016/S0143-4160(03)00156-8 PubMedCrossRefGoogle Scholar
  49. Zablocki K, Szczepanowska J, Duszynski J (2005) Extracellular pH modifies mitochondrial control of capacitative calcium entry in Jurkat cells. J Biol Chem 280:3516–3521. doi: 10.1074/jbc.M411507200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael A. Thompson
    • 1
  • Christina M. Pabelick
    • 1
    • 2
  • Y. S. Prakash
    • 1
    • 2
  1. 1.Department of AnesthesiologyMayo ClinicRochesterUSA
  2. 2.Department of Physiology and Biomedical EngineeringMayo ClinicRochesterUSA

Personalised recommendations