Skip to main content
Log in

Protective Effect of Retinal Ischemia by Blockers of Voltage-dependent Calcium Channels and Intracellular Calcium Stores

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the present study, the neuroprotective effect of blockers of voltage-dependent calcium channels (VDCC) and intracellular calcium stores on retinal ischemic damage induced by oxygen deprivation-low glucose insult (ODLG) was investigated. Retinal damage induced by ODLG was dependent on the calcium concentration in the perfusion medium. When incubated in medium containing 2.4 mM CaCl2, cell death in ischemic retinal slices treated with blockers of VDCC, ω-conotoxin GVIA (1.0 μM), ω-conotoxin MVIIC (100 nM) and nifedipine (1.0 μM), was reduced to 62 ± 2.3, 46 ± 4.3 and 47 ± 3.9%, respectively. In the presence of blockers of intracellular calcium stores, dantrolene (100 μM) and 2-APB (100 μM), the cell death was reduced to 46 ± 3.2 and 55 ± 2.9%, respectively. Tetrodotoxin (1.0 μM), reducing the extent of the membrane depolarization reduces the magnitude of calcium influx trough VDCC causing a reduction of the cell death to 55 ± 4.3. Lactate dehydrogenase content of untreated ischemic retinal slices was reduced by 37% and treatment of ischemic slices with BAPTA-AM (100 μM) or 2-APB (100 μM) abolished the leakage of LDH. Dantrolene (100 μM) and nifedipine (1.0 μM) partially blocked the induced reduction on the LDH content of retinal ischemic slices. Histological analysis of retinal ischemic slices showed 40% reduction of ganglion cells that was prevented by BAPTA-AM or dantrolene. 2-APB partially blocked this reduction whilst nifedipine had no effect, p > 0.95. Conclusion Blockers of VDCC and intracellular calcium-sensitive receptors exert neuroprotective effect on retinal ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler EM, Augustine GJ, Dufy SN, Charlton MP (1991) Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci 11:1496–1507

    PubMed  CAS  Google Scholar 

  • Bonano G, Sala R, Cancedda L, Cavazani P, Cossu M, Raiteri M (2000) Release of dopamine from human neocortex nerve terminals evoked by different stimuli involving extra- and intra-terminal calcium. Brit J Pharmacol 129:1780–1785

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AL, Duarte CB, Faro CJ, Carvalho AP, Pires EV (1998) Calcium influx through AMPA receptors and through calcium channels is regulated by protein kinase C in cultured retina amacrine-like cells. J Neurochem 70:2112–2119

    PubMed  CAS  Google Scholar 

  • Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1998) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469

    Article  Google Scholar 

  • Clark AF, Yorio T (2003) Ophthalmic drug discovery. Nature Rev 2:448–459

    Article  CAS  Google Scholar 

  • Crosson CE, Willis JA, Potter DE (1990) Effect of calcium antagonists, nifedipine, on ischemic retinal dysfunction. J Ocular Pharmacol 6:293–299

    CAS  Google Scholar 

  • Globus MYT, Alonso O, Dietrich DW, Busto R, Ginsberg MD (1995) Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 65:1704–1711

    Article  PubMed  CAS  Google Scholar 

  • Guenther E, Rothe T, Taschenberger H, Grantyn R (1994) Separation of calcium currents in retinal ganglion cells from postnatal rats. Brain Res 633:223–235

    Article  PubMed  CAS  Google Scholar 

  • Hadar EJ, Yang Y, Sayin U, Rutecki PA (2002) Suppression of pilocarpine-induced ictal oscillations in the hippocampal slice. Epilepsy Res 49:61–71

    Article  PubMed  CAS  Google Scholar 

  • Heildelberg R, Matthews G (1992) Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. J Physiol 447:235–256

    Google Scholar 

  • Kaya M, Tunç M, Ozdemir T, Altuntas I (2002) Calcium antagonist in N-methyl d-aspartate-induced retinal injury. Graefe’s Arch Clin Exp Ophthalmol 241:418–422

    Article  CAS  Google Scholar 

  • Kuriyama H, Nakagawa M, Tsuda M (2001) Intracellular Ca2+ changes induced by in vitro ischemia in rat retinal slices. Exp Eye Res 73:365–374

    Article  PubMed  CAS  Google Scholar 

  • Maroto R, de la Fuente MT, Zapater P, Abad F, Esquerro E, Garcia AG (1996) Effects of ω-conotoxin MVIIC on veratridine-induced cytotoxicity and cytosolic Ca2+ oscillations. Brain Res 714:209–214

    Article  PubMed  CAS  Google Scholar 

  • Melena J, Osborne NN (2001) Voltage dependent calcium channels in the rat retina: Involvement in NMDA-stimulated influx of calcium. Exp Eye Res 72:393–401

    Article  PubMed  CAS  Google Scholar 

  • Miljanich GP, Ramachandran J (1995) Antagonism of neuronal calcium channels: structure, function and therapeutics implications. Ann Review Pharmacol Toxicol 35:707–734

    Article  CAS  Google Scholar 

  • Nichols DG, Sihra TS, Sanchez-Prieto J (1987) Calcium-dependent and-independent release of glutamate from synaptosomes monitored by continuous fluorimetry. J Neurochem 49:50–57

    Article  Google Scholar 

  • Ooboschi H, Ibayashi S, Takano K, Sadoschima S, Kondo A, Uchmimura H, Fujishima M (2000) Hypothermia inhibits ischemia induced efflux of amino acids and neuronal damage in the hippocampus of aged rats. Brain Res 84:25–30

    Google Scholar 

  • Osborne NN, Ugarte M, Chao M, Chidlow G, Bae JH, Wood JPM (1999) Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Survey Ophthalmol 43:S102–S108

    Article  Google Scholar 

  • Osborne NN, Casson RJ, Wood JPM, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retinal Eye Res 23:91–147

    Article  CAS  Google Scholar 

  • Peng YW, Sharp AH, Snyder SH, Yau KW (1991) Localization of the inositol 1,4,5-triphosphate receptor in synaptic terminals in the vertebrate retina. Neuron 6:525–531

    Article  PubMed  CAS  Google Scholar 

  • Peppiatt CM, Collins TJ, Mackenzie L, Conway SJ, Holmes AB, Bootman MD, Berridge MJ, Seo JT, Roderick HL (2003) 2-Aminoethoxydiphenyl borate (2-APB) antagonizes inositol 1,4,5-triphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 34:98–108

    Google Scholar 

  • Romano C et al. (1995) Delayed exocytotoxic neurodegeneration induced by excitatory amino acids agonists in isolated retina. J Neurochem 65:59–67

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129

    Article  PubMed  CAS  Google Scholar 

  • Schmid S, Guenther E (1999) Voltage-activated calcium currents in rat retinal ganglion cells in situ: changes during prenatal and postnatal development. J Neurosci 19:3486–3494

    PubMed  CAS  Google Scholar 

  • Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I Pathophysiology. J Neurosurg 77:169–184

    Article  PubMed  CAS  Google Scholar 

  • Small DL, Monette R, Buchan AM, Morley P (1997) Identification of calcium channels involved in neuronal injury in rat hippocampal slices subjected to oxygen deprivation. Brain Res 753:209–218

    Article  PubMed  CAS  Google Scholar 

  • Turner TJ, Adams ME, Dunlap K (1993) Multiple calcium channel types coexist to regulate synaptosomal neurotransmitter release. Proc Nat Acad Sci USA 90:9518–9522

    Article  PubMed  CAS  Google Scholar 

  • Vallazza-Deschamps G, Fuchs C, Cia D, Tessier LH, Sahel JA, Dreyfus H, Picaud S (2005) Diltiazem-induced neuroprotection in glutamate excitotoxicity and ischemic insult of retinal neurons. Documenta Ophthalmol 110:25–35

    Article  Google Scholar 

  • Wheeler DB et al. (1994) Roles of N-type and Q-type calcium channels in supporting hippocampal synapse transmission. Science 264:107–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Supported by Instituto do Milenio, CNPq, Capes, Pronex and Fapemig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Vinicius Gomez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massote, P.D., Pinheiro, A.C.N., Fonseca, C.G. et al. Protective Effect of Retinal Ischemia by Blockers of Voltage-dependent Calcium Channels and Intracellular Calcium Stores. Cell Mol Neurobiol 28, 847–856 (2008). https://doi.org/10.1007/s10571-007-9243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9243-0

Keywords

Navigation