Cellular and Molecular Neurobiology

, Volume 28, Issue 6, pp 847–856 | Cite as

Protective Effect of Retinal Ischemia by Blockers of Voltage-dependent Calcium Channels and Intracellular Calcium Stores

  • Pindaro Dias Massote
  • Ana Cristina Nascimento Pinheiro
  • Cristina Guatimosim Fonseca
  • Marco Antonio Máximo Prado
  • André L. S. Guimarães
  • André R. Massensini
  • Marcus Vinicius Gomez
Original Paper


In the present study, the neuroprotective effect of blockers of voltage-dependent calcium channels (VDCC) and intracellular calcium stores on retinal ischemic damage induced by oxygen deprivation-low glucose insult (ODLG) was investigated. Retinal damage induced by ODLG was dependent on the calcium concentration in the perfusion medium. When incubated in medium containing 2.4 mM CaCl2, cell death in ischemic retinal slices treated with blockers of VDCC, ω-conotoxin GVIA (1.0 μM), ω-conotoxin MVIIC (100 nM) and nifedipine (1.0 μM), was reduced to 62 ± 2.3, 46 ± 4.3 and 47 ± 3.9%, respectively. In the presence of blockers of intracellular calcium stores, dantrolene (100 μM) and 2-APB (100 μM), the cell death was reduced to 46 ± 3.2 and 55 ± 2.9%, respectively. Tetrodotoxin (1.0 μM), reducing the extent of the membrane depolarization reduces the magnitude of calcium influx trough VDCC causing a reduction of the cell death to 55 ± 4.3. Lactate dehydrogenase content of untreated ischemic retinal slices was reduced by 37% and treatment of ischemic slices with BAPTA-AM (100 μM) or 2-APB (100 μM) abolished the leakage of LDH. Dantrolene (100 μM) and nifedipine (1.0 μM) partially blocked the induced reduction on the LDH content of retinal ischemic slices. Histological analysis of retinal ischemic slices showed 40% reduction of ganglion cells that was prevented by BAPTA-AM or dantrolene. 2-APB partially blocked this reduction whilst nifedipine had no effect, p > 0.95. Conclusion Blockers of VDCC and intracellular calcium-sensitive receptors exert neuroprotective effect on retinal ischemia.


Calcium channels Sodium channel Intracellular calcium Retinal ischemia Retinal slices 



Supported by Instituto do Milenio, CNPq, Capes, Pronex and Fapemig.


  1. Adler EM, Augustine GJ, Dufy SN, Charlton MP (1991) Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci 11:1496–1507PubMedGoogle Scholar
  2. Bonano G, Sala R, Cancedda L, Cavazani P, Cossu M, Raiteri M (2000) Release of dopamine from human neocortex nerve terminals evoked by different stimuli involving extra- and intra-terminal calcium. Brit J Pharmacol 129:1780–1785CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. Carvalho AL, Duarte CB, Faro CJ, Carvalho AP, Pires EV (1998) Calcium influx through AMPA receptors and through calcium channels is regulated by protein kinase C in cultured retina amacrine-like cells. J Neurochem 70:2112–2119PubMedGoogle Scholar
  5. Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60PubMedCrossRefGoogle Scholar
  6. Choi DW (1998) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469CrossRefGoogle Scholar
  7. Clark AF, Yorio T (2003) Ophthalmic drug discovery. Nature Rev 2:448–459CrossRefGoogle Scholar
  8. Crosson CE, Willis JA, Potter DE (1990) Effect of calcium antagonists, nifedipine, on ischemic retinal dysfunction. J Ocular Pharmacol 6:293–299Google Scholar
  9. Globus MYT, Alonso O, Dietrich DW, Busto R, Ginsberg MD (1995) Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 65:1704–1711PubMedCrossRefGoogle Scholar
  10. Guenther E, Rothe T, Taschenberger H, Grantyn R (1994) Separation of calcium currents in retinal ganglion cells from postnatal rats. Brain Res 633:223–235PubMedCrossRefGoogle Scholar
  11. Hadar EJ, Yang Y, Sayin U, Rutecki PA (2002) Suppression of pilocarpine-induced ictal oscillations in the hippocampal slice. Epilepsy Res 49:61–71PubMedCrossRefGoogle Scholar
  12. Heildelberg R, Matthews G (1992) Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. J Physiol 447:235–256Google Scholar
  13. Kaya M, Tunç M, Ozdemir T, Altuntas I (2002) Calcium antagonist in N-methyl d-aspartate-induced retinal injury. Graefe’s Arch Clin Exp Ophthalmol 241:418–422CrossRefGoogle Scholar
  14. Kuriyama H, Nakagawa M, Tsuda M (2001) Intracellular Ca2+ changes induced by in vitro ischemia in rat retinal slices. Exp Eye Res 73:365–374PubMedCrossRefGoogle Scholar
  15. Maroto R, de la Fuente MT, Zapater P, Abad F, Esquerro E, Garcia AG (1996) Effects of ω-conotoxin MVIIC on veratridine-induced cytotoxicity and cytosolic Ca2+ oscillations. Brain Res 714:209–214PubMedCrossRefGoogle Scholar
  16. Melena J, Osborne NN (2001) Voltage dependent calcium channels in the rat retina: Involvement in NMDA-stimulated influx of calcium. Exp Eye Res 72:393–401PubMedCrossRefGoogle Scholar
  17. Miljanich GP, Ramachandran J (1995) Antagonism of neuronal calcium channels: structure, function and therapeutics implications. Ann Review Pharmacol Toxicol 35:707–734CrossRefGoogle Scholar
  18. Nichols DG, Sihra TS, Sanchez-Prieto J (1987) Calcium-dependent and-independent release of glutamate from synaptosomes monitored by continuous fluorimetry. J Neurochem 49:50–57CrossRefGoogle Scholar
  19. Ooboschi H, Ibayashi S, Takano K, Sadoschima S, Kondo A, Uchmimura H, Fujishima M (2000) Hypothermia inhibits ischemia induced efflux of amino acids and neuronal damage in the hippocampus of aged rats. Brain Res 84:25–30Google Scholar
  20. Osborne NN, Ugarte M, Chao M, Chidlow G, Bae JH, Wood JPM (1999) Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Survey Ophthalmol 43:S102–S108CrossRefGoogle Scholar
  21. Osborne NN, Casson RJ, Wood JPM, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retinal Eye Res 23:91–147CrossRefGoogle Scholar
  22. Peng YW, Sharp AH, Snyder SH, Yau KW (1991) Localization of the inositol 1,4,5-triphosphate receptor in synaptic terminals in the vertebrate retina. Neuron 6:525–531PubMedCrossRefGoogle Scholar
  23. Peppiatt CM, Collins TJ, Mackenzie L, Conway SJ, Holmes AB, Bootman MD, Berridge MJ, Seo JT, Roderick HL (2003) 2-Aminoethoxydiphenyl borate (2-APB) antagonizes inositol 1,4,5-triphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 34:98–108Google Scholar
  24. Romano C et al. (1995) Delayed exocytotoxic neurodegeneration induced by excitatory amino acids agonists in isolated retina. J Neurochem 65:59–67PubMedCrossRefGoogle Scholar
  25. Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129PubMedCrossRefGoogle Scholar
  26. Schmid S, Guenther E (1999) Voltage-activated calcium currents in rat retinal ganglion cells in situ: changes during prenatal and postnatal development. J Neurosci 19:3486–3494PubMedGoogle Scholar
  27. Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I Pathophysiology. J Neurosurg 77:169–184PubMedCrossRefGoogle Scholar
  28. Small DL, Monette R, Buchan AM, Morley P (1997) Identification of calcium channels involved in neuronal injury in rat hippocampal slices subjected to oxygen deprivation. Brain Res 753:209–218PubMedCrossRefGoogle Scholar
  29. Turner TJ, Adams ME, Dunlap K (1993) Multiple calcium channel types coexist to regulate synaptosomal neurotransmitter release. Proc Nat Acad Sci USA 90:9518–9522PubMedCrossRefGoogle Scholar
  30. Vallazza-Deschamps G, Fuchs C, Cia D, Tessier LH, Sahel JA, Dreyfus H, Picaud S (2005) Diltiazem-induced neuroprotection in glutamate excitotoxicity and ischemic insult of retinal neurons. Documenta Ophthalmol 110:25–35CrossRefGoogle Scholar
  31. Wheeler DB et al. (1994) Roles of N-type and Q-type calcium channels in supporting hippocampal synapse transmission. Science 264:107–111PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pindaro Dias Massote
    • 1
  • Ana Cristina Nascimento Pinheiro
    • 2
  • Cristina Guatimosim Fonseca
    • 3
  • Marco Antonio Máximo Prado
    • 2
  • André L. S. Guimarães
    • 4
  • André R. Massensini
    • 5
  • Marcus Vinicius Gomez
    • 1
    • 2
  1. 1.Nucleo Pós Graduação Santa CasaBelo HorizonteBrazil
  2. 2.Departamento de FarmacologiaICB, UFMGBelo HorizonteBrazil
  3. 3.Departamento de MorfologiaICB, UFMGBelo HorizonteBrazil
  4. 4.Departamento de DentisticaUniversidade Estadual Montes ClarosMontes ClarosBrazil
  5. 5.Departamento de Fisiologia e BiofísicaICB, UFMGBelo HorizonteBrazil

Personalised recommendations