Advertisement

Cellular and Molecular Neurobiology

, Volume 28, Issue 5, pp 629–641 | Cite as

Agmatine and Imidazoline Receptors: Their Role in Opioid Analgesia, Tolerance and Dependence

  • Ning Wu
  • Rui-Bin Su
  • Jin Li
Original Paper

Abstract

Agmatine is an endogenous amine that is synthesized following the decarboxylation of l-arginine by arginine decarboxylase. Agmatine exists in mammalian brain and has been proposed as a neurotransmitter and/or neurotransmodulator. Agmatine binds to several targets and is considered as an endogenous ligand for imidazoline receptors. This review, mainly based on our research work in the past decade, focused on the modulations by agmatine action on imidazoline receptors to opioid analgesia, tolerance and dependence, and its possible neurochemical mechanisms. We went on to propose that agmatine and imidazoline receptors constitute a novel system of modulating opioid functions.

Keywords

Agmatine Imidazoline receptors Opioid Analgesia Tolerance and dependence 

Notes

Acknowledgement

This work was supported by National Basic Research Program of China (2003CB515400). We thank Prof. Xian-Sheng Lu for correcting the writing of the manuscript.

References

  1. Aricioglu F, Ercil E, Dulger G (2003) Agmatine inhibits naloxone-induced contractions in morphine-dependent guinea pig ileum. Ann NY Acad Sci 1009:147–151PubMedCrossRefGoogle Scholar
  2. Aricioglu F, Paul IA, Regunathan S (2004) Agmatine reduces only peripheral-related behavioral signs, not the central signs, of morphine withdrawal in nNOS deficient transgenic mice. Neurosci Lett 354:153–157PubMedCrossRefGoogle Scholar
  3. Aricioglu-Kartal F, Regunathan S (2002) Effect of chronic morphine treatment on the biosynthesis of agmatine in rat brain and other tissues. Life Sci 71:1695–1701PubMedCrossRefGoogle Scholar
  4. Aricioglu-Kartal F, Uzbay IT (1997) Inhibitory effect of agmatine on naloxone-precipitated abstinence syndrome in morphine dependent rats. Life Sci 61:1775–1781PubMedCrossRefGoogle Scholar
  5. Boronat MA, Olmos G, Garcia-Sevilla JA (1998) Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands. Br J Pharmacol 125:175–185PubMedCrossRefGoogle Scholar
  6. Bricca G, Greney H, Zhang J, Dontenwill M, Stutzmann J, Belcourt A, Bousquet P (1994) Human brain imidazoline receptors: further characterization with [3H]clonidine. Eur J Pharmacol 266:25–33PubMedCrossRefGoogle Scholar
  7. Dontenwill M, Pascal G, Piletz JE, Chen M, Baldwin J, Ronde P, Dupuy L, Urosevic D, Greney H, Takeda K, Bousquet P (2003a) IRAS, the human homologue of nischarin, prolongs survival of transfected PC12 cell. Cell Death Differ 10:933–935PubMedCrossRefGoogle Scholar
  8. Dontenwill M, Piletz JE, Chen M, Baldwin J, Pascal G, Ronde P, Dupuy L, Greney H, Takeda K, Bousquetd P (2003b) IRAS is an anti-apoptotic protein. Ann NY Acad Sci 1009:400–412PubMedCrossRefGoogle Scholar
  9. Dupuy L, Urosevic D, Greney H, Quaglia W, Pigini M, Brasili L, Dontenwill M, Bousquet P (2004) I1 imidazoline receptor-mediated effects on apoptotic processes in PC12 cells. Cell Death Differ 11:1049–1052PubMedCrossRefGoogle Scholar
  10. Edward L, Fishman D, Horowitz P, Nicole B, Kester M, Ernsberge P (2001) The imidazoline-1 receptor in PC12 pheochromocytoma cells activatives protein kinase C, extracelluar signal-regulated kinase (ERK) and c-jun N-terminal kinase (JUK). J Neurochem 79:931–940CrossRefGoogle Scholar
  11. Eglen RM, Hudson AL, Kendall DA, Nutt DJ, Morgan NG, Wilson VG, Dillon MP (1998) Seeing through a glass darkly: casting light on imidazoline ‘I’sites. Trends Pharmacol Sci 19:381–390PubMedCrossRefGoogle Scholar
  12. Ernsberger P, Graves ME, Graff LM, Zakieh N, Nguyen P, Collins LA, Westbrooks KL, Johnson GG (1995) Imidazoline receptors. Definition, characterization, distribution, and transmembrane signaling. Ann NY Acad Sci 763:22–42PubMedCrossRefGoogle Scholar
  13. Ernsberger P, Shen IH (1997) Membrane localization and guanine nucleotide sensitivity of medullary I1-imidazoline binding sites. Neurochem Int 30:17–28PubMedCrossRefGoogle Scholar
  14. Fairbanks CA, Schreiber KL, Brewer KL, Yu CG, Stone LS, Kitto KF, Nguyen HO, Grocholski BM, Shoeman DW, Kehl LJ, Regunathan S, Reis DJ, Yezierski RP, Wilcox GL (2000) Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci USA 97:10584–10589PubMedCrossRefGoogle Scholar
  15. Heidbreder CA, Hagan JJ (2005) Novel pharmacotherapeutic approaches for the treatment of drug addiction and craving. Curr Opin Pharmacol 5:107–118PubMedCrossRefGoogle Scholar
  16. Hernandez S, Schwarcz de Tarlovsky S (1999) Arginine decarboxylase in Trypanosoma cruzi, characteristics and kinetic properties. Cell Mol Biol (Noisy-le-grand) 45:383–391Google Scholar
  17. Holt A, Baker GB (1995) Metabolism of agmatine (clonidine-displacing substance) by diamine oxidase and the possible implications for studies of imidazoline receptors. Prog Brain Res 106:187–197PubMedCrossRefGoogle Scholar
  18. Horvath G, Kekesi G, Dobos I, Szikszay M, Klimscha W, Benedek G (1999) Effect of intrathecal agmatine on inflammation-induced thermal hyperalgesia in rats. Eur J Pharmacol 368:197–204PubMedCrossRefGoogle Scholar
  19. Ivanov TR, Jones JC, Dontenwill M, Bousquet P, Piletz JE (1998) Charactetization of a partial cDNA clone detected by imidazoline receptor-selective antisera. J Auton Nerv Syst 72:98–110PubMedCrossRefGoogle Scholar
  20. Kolesnikov Y, Jain S, Pasternak GW (1996) Modulation of opioid analgesia by agmatine. Eur J Pharmacol 296:17–22PubMedCrossRefGoogle Scholar
  21. Kornetsky C (2004) Brain-stimulation reward, morphine-induced oral stereotypy, and sensitization: implications for abuse. Neurosci Biobehav Rev 27:777–786PubMedCrossRefGoogle Scholar
  22. Li J, Li X, Pei G, Qin BY (1998a) Agmatine inhibited tolerance to and dependence on morphine in guinea pig ileum in vitro. Acta Pharmacol Sin 19:564–568Google Scholar
  23. Li J, Li X, Pei G, Qin BY (1998b) Coupling relationship between imidazoline receptors and G protein. Chin Pharmacol Co 15:27–28Google Scholar
  24. Li J, Li X, Pei G, Qin BY (1999a) Analgesic effect of agmatine and its enhancement on morphine analgesia in mice and rats. Acta Pharmacol Sin 20:81–85Google Scholar
  25. Li J, Li X, Pei G, Qin BY (1999b) Effects of agmatine on tolerance to and substance dependence on morphine in mice. Acta Pharmacol Sin 20:232–238Google Scholar
  26. Li J, Li X, Pei G, Qin BY (1999c) Influence of agmatine in adaptation of cAMP message transduction system of opiate receptors. Acta Pharmacol Sin 20:592–596Google Scholar
  27. Li J, Li X, Pei G, Qin BY (1999d) Correlation between agmatines inhibition of morphine withdrawaland its inhibition of nitric oxide synthase. Acta Pharmacol Sin 20:375–380Google Scholar
  28. Li J, Li X, Pei G, Qin BY (1999e) Inhibition of agmatine on releasing monoamine in different brain areas of rats. Pharm J Chin PLA 15:2–7Google Scholar
  29. Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969PubMedCrossRefGoogle Scholar
  30. Li F, Wu N, Su RB, Zheng JQ, Xu B, Lu XQ, Cong B, Li J (2006) Involvement of phosphatidylcholine-selective phospholipase C in activation of mitogen-activated protein kinase pathways in imidazoline receptor antisera-selected protein. J Cell Biochem 98:1615–1628PubMedCrossRefGoogle Scholar
  31. Liedtke CM, Ernsberger P (1995) Regulation of electrolyte transport in rabbit tracheal epithelial cells by the I1-imidazoline agonist moxonidine. Ann NY Acad Sci 763:401–404PubMedCrossRefGoogle Scholar
  32. Lu G, Su RB, Li J, Qin BY (2003) Modulation by α-Difluoromethyl-ornithine and aminoguanidine of pain threshold, morphine analgesia and tolerance. Eur J Pharmacol 478:139–144PubMedCrossRefGoogle Scholar
  33. Lu XQ, Su RB, Liu Y, Hu G, Li J (2003) Influence of intracerebroventricular and intrathecal injection of agmatine on morphine pharmacological effects. Pharm J Chin PLA 19:324–327Google Scholar
  34. Moldering GJ, Moura D, Fink K, Boisch H, Gothert M (1993) Binding of [3H]clonidine to I1-imidazoline sites in bovine adrenal medullary membranes. Naunyn Schmiedebergs Arch Pharmacol 348:70–76CrossRefGoogle Scholar
  35. Morgan AD, Campbell UC, Fons RD, Carroll ME (2002) Effects of agmatine on the escalation of intravenous cocaine and fentanyl selfadministration in rats. Pharmacol Biochem Be 72:873–880CrossRefGoogle Scholar
  36. Piletz JE, Sletten K (1993) Nonadrenergic imidazoline binding sites on human platelets. J Pharmacol Exp Ther 267:1493–1502PubMedGoogle Scholar
  37. Piletz JE, Jones JC, Zhu H, Bishara O, Ernsberger P (1999) Imidazoline receptor antisera-selected cDNA and mRNA distribution. Ann NY Acad Sci 881:1–7PubMedCrossRefGoogle Scholar
  38. Piletz JE, Ivanov TR, Sharp JD, Ernsberger P, Chang CH, Pickard RT, Gold G, Roth B, Zhu H, Jones JC, Baldwin J, Reis DJ (2000) Imidazoline receptor antisera-selected (IRAS) cDNA: cloning and characterization. DNA Cell Boil 19:319–329CrossRefGoogle Scholar
  39. Piletz JE, Wang G, Zhu H (2003) Cell signaling by imidazoline-1 receptor candidate, IRAS, and the nischarin homologue. Ann NY Acad Sci 1009:392–399PubMedCrossRefGoogle Scholar
  40. Qin XH, Su RB, Wu N, Wei XL, Zhang H, Li J (2005) The analgesic effect of agmatine on inflammatory pain and its influence on the analgesia effect of morphine. Chin Pharmacol Bull 22:1070–1074Google Scholar
  41. Regunathan S (2006) Agmatine: biological role and therapeutic potentials in morphine analgesia and dependence. AAPS J 8:E479–E484PubMedCrossRefGoogle Scholar
  42. Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 21:187–193PubMedCrossRefGoogle Scholar
  43. Roerig SC (2003) Spinal and supraspinal agmatine activate different receptors to enhance spinal morphine antinociception. Ann NY Acad Sci 1009:116–126PubMedCrossRefGoogle Scholar
  44. Ruggiero DA, Regunathan S, Wang H, Milner T, Reis DJ (1998) Immunocytochemical localization of an imidazoline receptor protein in the central nervous system. Brain Res 780:270–293PubMedCrossRefGoogle Scholar
  45. Sano H, Liu SCH, Lane WS, Pileta JE, Lienhard G (2002) Insulin receptor substrate 4 associates with the protein IRAS. J Biol Chem 277:19439–19447PubMedCrossRefGoogle Scholar
  46. Selamnia M, Mayeur C, Robert V, Blachicr F (1998) Alpha-difluoromethylornithine (DFMO) as a potent arginase activity inhibitor in human colon carcinoma cells. Biochem Pharmacol 55:1241–1245PubMedCrossRefGoogle Scholar
  47. Separovic D, Kester M, Ernsberger P (1996) Coupling of I1-imidazoline receptors to diacylglyceride accumulation in PC12 rat pheochromocytoma cells. Mol Pharmacol 49:668–675PubMedGoogle Scholar
  48. Separovic D, Kester M, Haxhiu MA, Piletz JE (1997) Activation of phosphatidylcholine selective phospholipase C by I1-imidazoline receptors in PC12 cells and rostral ventrolateral medulla. Brain Res 749:335–339PubMedCrossRefGoogle Scholar
  49. Su RB, Li J, Gao K, Pei G, Qin BY (2000) Influence of idazoxan on analgesia, tolerance, and physical dependence of morphine in mice and rats in vivo. Acta Pharmacol Sin 21:1011–1015PubMedGoogle Scholar
  50. Su RB, Li J, Qin BY (2003a) A biphasic opioid function modulator: agmatine. Acta Pharmacol Sin 24:631–636PubMedGoogle Scholar
  51. Su RB, Li J, Qin BY (2003b) Effects of l-arginine and anti-l-arginine decarboxylase antibody on morphine analgesia and tolerance. Chin J Drug Depend 12:97–101Google Scholar
  52. Su RB, Wei XL, Liu Y, Lu XQ, Li J (2005) Effect of l-arginine and l-arginine decarboxylase antibodies on pain threshold and analgesic of morphine. Chin J Pharmacol Toxicol 19:241–247Google Scholar
  53. Takada K, Hayashi Y, Kamibayashi T, Mammoto T, Yamatodani A, Kitamura S, Yoshiya I (1997) The involvement of pertussis toxin-sensitive G proteins in the post receptor mechanism of central imidazoline-1 receptors. Br J Pharmacol 120:1575–1581PubMedCrossRefGoogle Scholar
  54. Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of locomotion sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120CrossRefGoogle Scholar
  55. Wang XL, Su RB, Yang HJ, Wu N, Mi WD, Li J (2005) Effect of agmatine on morphine analgesia, and tolerance in a rat model of neuropathic pain. Chin J Anesthesiol 25:584–588Google Scholar
  56. Wang XF, Wu N, Su RB, Li J (2006) Regulation of agmatine on NMDA receptors expression in morphine dependent rats. Chin J Drug Depend 15:267–271Google Scholar
  57. Wei XL, Su RB, Yuan BL, Yu SZ, Lu XQ, Liu Y, Li J (2005) Inhibition by agmatine on morphine-induced conditioned place preference in rats. Eur J Pharmacol 515:99–106PubMedCrossRefGoogle Scholar
  58. Weng XC, Gai XD, Zheng JQ, Li J (2003) Agmatine block voltage-gated calcium channel in cultured rat hippocampal neurons. Acta Pharmacol Sin 24:746–750PubMedGoogle Scholar
  59. Wu N, Su RB, Li J, Qin BY (2004) Stable co-expression of rat μ opioid receptor and human imidazoline-1 receptor in Chinese hamster ovary cells. Bull Acad Mil Med Sci 28:329–332Google Scholar
  60. Wu N, Su RB, Liu Y, Lu XQ, Zheng JQ, Cong B, Li J (2006) Modulation of agmatine on calcium signal in morphine-dependent CHO cells by activation of IRAS, a candidate for imidazoline I1 receptor. Eur J Pharmacol 548:21–28PubMedCrossRefGoogle Scholar
  61. Wu N, Su RB, Zhao Y, Xu B, Liu Y, Lu XQ, Li J (2005) Role of I1-imidazoline receptor on Naloxone-induced cAMP overshooting in chronic morphine treated CHO-μ/I1 cells. Biochemical Pharmcol 70:1079–1087CrossRefGoogle Scholar
  62. Zhang J, El-Ms MM, Abdel-Rahman AA (2001) Imidazoline I1 receptor-induced activation of phosphatidylcholinespecific phospholipase C elicits mitogen-activated protein kinase phosphorylation in PC12 cells. Eur J Pharmacol 415:117–125PubMedCrossRefGoogle Scholar
  63. Zhao Y, Su RB, Wu N, Xu B, Liu Y, Lu XQ, Li J (2004) Stable expression of imidazoline-1 receptor in mammalian cells. Bull Acad Mil Med Sci 28:333–336Google Scholar
  64. Zheng JQ, Weng XC, Gai XD, Li J, Xiao WB (2004) Mechanisms underlining blockage of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons. Acta Pharmacol Sin 25:281–285PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Beijing Institute of Pharmacology and ToxicologyBeijingP.R. China

Personalised recommendations