Cellular and Molecular Neurobiology

, Volume 27, Issue 3, pp 359–365 | Cite as

Ultra-Fast Biosensors and Multi-Photon Microscopy in the Future of Brain Studies

  • Rumiana Bakalova

The direct, highly selective and sensitive real-time imaging of neuro- and biochemical mediators is the only way to clarify precisely the chemistry of the brain and to discover the key molecular targets involved in regulation of brain homeostasis. To realize that, we need: high-speed deep-tissue imaging techniques with high spatial and temporal resolution; and ultra-fast and highly selective molecular sensors, giving a possibility to monitor target molecules directly in their physiological environment; in addition, these molecular sensors have to be comparatively small and permeable for blood-brain barrier, to be applicable in brain studies. The present view accents on the perspectives for development of direct approach for investigation of function/flow coupling phenomenon in the brain, based on the current progress in development of ultra-fast molecular sensors for direct visualization of biochemical mediators (e.g., nitric oxide, Ca ions), and high-speed two-photon/multi-photon deep-tissue imaging.


neuroscience function/flow coupling multi-photon microscopy biosensors 


  1. Ances, B. M. (2004). Coupling of changes in cerebral blood flow with neuronal activity: What must initially dip must come back up. J. Cereb. Blood Flow Metab. 24:1–6.PubMedCrossRefGoogle Scholar
  2. Bakalova, R., Matsuura, T., and Kanno, I. (2002). The cyclooxygenase inhibitors Indomethacin and Rofecoxib reduce regional cerebral blood flow evoked by somatosensory stimulation in rats. Exp. Biol. Med. (Maywood) 227:465–473.Google Scholar
  3. Chaigneau, E., Oheim, M., Audinat, E., and Charpac, S. (2003). Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl. Acad. Sci. U. S. A. 100:13081–13086.PubMedCrossRefGoogle Scholar
  4. Chalon, S., Vancassel, S., Zimmer, L., Guilloteau, D., and Durand, G. (2001). Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission. Lipids 36:937–944.PubMedCrossRefGoogle Scholar
  5. Dale, N., Hatz, S., Tian, F., and Llaudet, E. (2005). Listening to the brain microelectrode biosensors for neurochemicals. Trends Biotechnol. 23:420–428.PubMedCrossRefGoogle Scholar
  6. Fan, C., Plaxco, K. W., and Heeger, A. J. (2005). Biosensors based on binding-modulated donor–acceptor distance. Trends Biotechnol. 23:186–192.PubMedCrossRefGoogle Scholar
  7. Girouard, H., and Iadecola, C. (2006). Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol. 100:328–335.PubMedCrossRefGoogle Scholar
  8. Hirase, H. (2005). A multi-photon window onto neuronal-glial-vascular communication. Trends Neurosci. 28:217–219.PubMedCrossRefGoogle Scholar
  9. Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5:347–360.PubMedCrossRefGoogle Scholar
  10. Kagan, V., Bakalova, R., Koynova, G., Tyurin, V., Serbinova, E., Petkov, V. V., Petkov, V. D., Staneva, D., and Packer, L. (1992). Antioxidant protection in the brain against oxidative stress. In Packer, L., Prilipko, L., and Christen, Y. (eds.), Free Radicals in the Brain: Aging, Neurological and Mental Disorders, Springer Verlag, Berlin, pp. 49–61.Google Scholar
  11. Lauritzen, M. (2005). Reading vascular changes in brain imaging: Is dendritic calcium the key? Nat. Rev. Neurosci. 6:77–85.PubMedCrossRefGoogle Scholar
  12. Lim, M. H., Xu, D., and Lippard, S. J. (2006). Vizualization of nitric oxide in living cells by a cupper-based fluorescent probe. Nat. Chem. Biol. 2:357–380.CrossRefGoogle Scholar
  13. Magistretti, P. J., Pellerin, L., Rothman, D. L., and Shulman, R. G. (1999). Energy demand. Science 22:496–497.CrossRefGoogle Scholar
  14. O’Neill, R. D., Lowry, J. P., and Mas, M. (1998). Monitoring brain chemistry in vivo: Voltametric techniques, sensors, and behavioral applications. Crit. Rev. Neurobiol. 12:69–127.PubMedGoogle Scholar
  15. Phillis, J. W., Horrocks, L. A., and Farooqui, A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Brain Res. Rev. 52:201–243.CrossRefGoogle Scholar
  16. Simard, M., Arcuino, G., Takano, T., Liu, Q. S., and Nedergaard, M. (2003). Signaling at the gliovascular interface. J. Neurosci. 23:9254–9262.PubMedGoogle Scholar
  17. Solfrizzi, V., D’Introno, A., Colacicco, A. M., Capurso, C., Del Parigi, A., Capurso, S., Gadaleta, A., Capurso, A., and Panza, F. (2005). Dietary fatty acids intake: Possible role in cognitive decline and dementia. Exp. Gerontol. 40:257–270.PubMedCrossRefGoogle Scholar
  18. Strowbridge, B. W. (2006). Imaging activity in brain cells: Deconvultion clears the haze. Nat. Methods 3:344–346.PubMedCrossRefGoogle Scholar
  19. Takano, T., Tian, G-F., Peng, W., Lou, N., Libionka, W., Han, X., and Nedergaard, M. (2006). Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9:260–267.PubMedCrossRefGoogle Scholar
  20. Voltera, A., and Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: The revolution continuous. Nat. Rev. Neurosci. 6:626–640.CrossRefGoogle Scholar
  21. Wang, X., Lou, N., Xu, Q., Tian, G-F., Peng, W. G., Han, X., Kang, J., Takano, T., and Nedergaard, M. (2006). Atrocytic Ca2 + signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9:816–823.PubMedCrossRefGoogle Scholar
  22. Yehuda, S., Rabinovitz, S., Carasso, R. L., and Mostofsky, D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.PubMedCrossRefGoogle Scholar
  23. Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., Hossmann, K-A., Pozzan, T., and Carmignoto, G. (2003). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6:43–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.On-Site Sensing and Diagnosis Research LaboratoryAIST-KyushyTosuJapan
  2. 2.Department of Biophysics, Molecular Imaging CenterNational Institute of Radiological SciencesChibaJapan
  3. 3.On-Site Sensing and Diagnosis Research LaboratoryAIST-KyushyTosuJapan

Personalised recommendations