Cellular and Molecular Neurobiology

, Volume 27, Issue 3, pp 303–316 | Cite as

Chelating Compound, Chrysoidine, Is More Effective in Both Antiprion Activity and Brain Endothelial Permeability Than Quinacrine

  • Katsumi Doh-ura
  • Kazuhiko Tamura
  • Yoshiharu Karube
  • Mikihiko Naito
  • Takashi Tsuruo
  • Yasufumi Kataoka


1. As an extension of our previous study of quinacrine and its derivatives, chelating chemicals were screened to obtain more effective, better brain-permeable antiprion compounds using either prion-infected neuroblastoma cells or brain capillary endothelial cells.

2. Eleven chemicals were found to have antiprion activity. Most of them shared a common structure consisting of benzene or naphthalene at either end of an azo bond. Structure–activity data suggest that chelating activity is not necessary but might contribute to the antiprion action.

3. Chrysoidine, a representative compound found here, was about 27 times more effective in the antiprion activity and five times more efficiently permeable through the brain capillary endothelial cells than quinacrine was.

4. These chemicals might be useful as compounds for development of therapeutics for prion diseases.


prion chrysoidine blood–brain barrier aromatic azo compounds therapy chelating agents brain endothelial cells prion-infected neuroblastoma cells 



This study was supported by a Grant (H16-kokoro-024) to K.D. from the Ministry of Health, Labor, and Welfare, Japan. The authors thank Drs. Jiro Takata, Atsushi Yamauchi, Shinya Dohgu, Satoshi Kawatake, Toru Iwaki, and Kenta Teruya for their suggestions, and Ms. Kyomi Sasaki for manuscript preparation.


  1. Anomymous. (1975). Chrysoidine. Int. Agency Res. Cancer Monogr. 8:91–96.Google Scholar
  2. Brown, D. R. (2004). Metallic prions. Biochem. Soc. Symp. 71:193–202.PubMedGoogle Scholar
  3. Cartwright, R. A., Robinson, M. R. G., Glashan, R. W., Gray, B. K., Hamilton-Stewart, P., Cartwright, S. C., and Barnham-Hall, D. (1983). Does the use of stained maggots present a risk of bladder cancer to coarse fishermen? Carcinogenesis 4:111–113.PubMedCrossRefGoogle Scholar
  4. Dehouck, M. P., Jolliet-Riant, P., Brée, F., Fruchart, J. C., Cecchelli, R., and Tillement, J. P. (1992). Drug transfer across the blood–brain barrier: Correlation between in vitro and in vivo models. J. Neurochem. 58:1790–1797.PubMedCrossRefGoogle Scholar
  5. Dohgu, S., Yamauchi, A., Takata, F., Sawada, Y., Higuchi, S., Naito, M., Tsuruo, T., Shirabe, S., Niwa, M., Katamine, S., and Kataoka, Y. (2004). Uptake and efflux of quinacrine, a candidate for the treatment of prion diseases, at the blood–brain barrier. Cell. Mol. Neurobiol. 24:205–217.PubMedCrossRefGoogle Scholar
  6. Doh-Ura, K., Iwaki, T., and Caughey, B. (2000). Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol. 74:4894–4897.PubMedCrossRefGoogle Scholar
  7. Frostell-Karlsson, A., Remaeus, A., Roos, H., Andersson, K., Borg, P., Hamalainen, M., and Karlsson, R. (2000). Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J. Med. Chem. 43:1986–1992.PubMedCrossRefGoogle Scholar
  8. Ishikawa, K., Doh-ura, K., Kudo, Y., Nishida, N., Murakami-Kubo, I., Ando, Y., Sawada, T., and Iwaki, T. (2004). Amyloid imaging probes are useful for detection of prion plaques and treatment of transmissible spongiform encephalopathies. J. Gen. Virol. 85:1785–1790.PubMedCrossRefGoogle Scholar
  9. Kawatake, S., Nishimura, Y., Sakaguchi, S., Iwaki, T., and Doh-ura, K. (2006). Surface plasmon resonance analysis for the screening of anti-prion compounds. Biol. Pharm. Bull. 29:927–932.PubMedCrossRefGoogle Scholar
  10. Kim, C.-L., Karino, A., Ishiguro, N., Shinagawa, M., Sato, M., and Horiuchi, M. (2004). Cell-surface retention of PrPC by anti-PrP antibody prevents protease-resistant PrP formation. J. Gen. Virol. 85:3473–3482.PubMedCrossRefGoogle Scholar
  11. Klunk, W. E., Bacskai, B. J., Mathis, C. A., Kajdasz, S. T., McLellan, M. E., Frosch, M. P., Debnath, M. L., Holt, D. P., Wang, Y., and Hyman, B. T. (2002). Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J. Neuropathol. Exp. Neurol. 61:797–805.PubMedGoogle Scholar
  12. Murakami-Kubo, I., Doh-Ura, K., Ishikawa, K., Kawatake, S., Sasaki, K., Kira, J., Ohta, S., and Iwaki, T. (2004). Quinoline derivatives are therapeutic candidates for transmissible spongiform encephalopathies. J. Virol. 78:1281–1288.PubMedCrossRefGoogle Scholar
  13. Nakajima, M., Yamada, T., Kusuhara, T., Furukawa, H., Takahashi, M., Yamauchi, A., and Kataoka, Y. (2004). Results of quinacrine administration to patients with Creutzfeldt–Jakob disease. Dement. Geriatr. Cogn. Disord. 17:158–163.PubMedCrossRefGoogle Scholar
  14. Prusiner, S. B. (1991). Molecular biology of prion diseases. Science 252:1515–1522.PubMedCrossRefGoogle Scholar
  15. Race, R. E., Caughey, B., Graham, K., Ernst, D., and Chesebro, B. (1988). Analyses of frequency of infection, specific infectivity, and prion protein biosynthesis in scrapie-infected neuroblastoma cell clones. J. Virol. 62:2845–2849.PubMedGoogle Scholar
  16. Sandhu, P., and Chipman, J. K. (1990). Bacterial mutagenesis and hepatocyte unscheduled DNA synthesis induced by chrysoidine azo-dye components. Mutat. Res. 240:227–236.PubMedCrossRefGoogle Scholar
  17. Sole, G., and Sorahan, T. (1985). Coarse fishing and risk of urothelial cancer. Lancet 1:1477–1479.PubMedCrossRefGoogle Scholar
  18. Sorahan, T., and Sole, G. (1990). Coarse fishing and urothelial cancer: A regional case-control study. Br. J. Cancer 62:138–141.PubMedGoogle Scholar
  19. Tatsuta, T., Naito, M., Oh-hara, T., Sugawara, I., and Tsuruo, T. (1992). Functional involvement of P-glycoprotein in blood–brain barrier. J. Biol. Chem. 267:20383–20391.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Katsumi Doh-ura
    • 1
    • 5
  • Kazuhiko Tamura
    • 2
  • Yoshiharu Karube
    • 3
  • Mikihiko Naito
    • 4
  • Takashi Tsuruo
    • 4
  • Yasufumi Kataoka
    • 2
  1. 1.Department of Prion ResearchTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
  3. 3.Department of Drug Design and Drug Delivery, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
  4. 4.Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
  5. 5.Department of Prion ResearchTohoku University Graduate School of MedicineAoba-kuJapan

Personalised recommendations