Cellular and Molecular Neurobiology

, Volume 27, Issue 2, pp 211–227 | Cite as

Hyperthermia-Induced Seizures Modify the GABAA and Benzodiazepine Receptor Binding in Immature Rat Brain

  • M. González Ramírez
  • S. Orozco Suárez
  • H. Salgado Ceballos
  • A. Feria Velasco
  • L. Rocha

Effects of hyperthermia-induced seizures (HS) on GABAA and benzodiazepine (BDZ) receptor binding in immature rat brain were evaluated using in vitro autoradiography. HS were induced in 10-days-old rats by a regulated stream of moderately heated air directed 50 cm above the animals. Rats were killed 30 min, 24 h or 20 days after HS and their brains were used for in vitro autoradiography experiments to determine GABAA and BDZ receptor binding. GABAA binding was significantly enhanced in all brain areas evaluated 30 min after HS, an effect that endures 24 h and 20 days after seizures. Concerning BDZ receptor binding, a significant increase was detected in entorhinal and perirhinal cortices and decreased in basolateral amygdala 30 min following HS. One day after HS, animals demonstrated enhanced BDZ binding in the cingulate, frontal, posterior parietal, entorhinal, temporal and perirhinal cortices; striatum, accumbens, substantia nigra pars compacta and amygdala nuclei. Twenty days after HS enhanced BDZ binding was restricted in the cingulated, frontal, anterior and posterior parietal cortices, as well as in substantia nigra pars reticulata, whereas decreased values were found in accumbens nucleus and substantia nigra pars compacta. Our data indicate differential effects of HS in GABAA and BDZ binding in immature brain. HS-induced GABAA and BDZ changes are different from those previously described in experimental models of temporal lobe epilepsy in adult animals.


GABAA receptors benzodiazepine receptors immature brain febrile seizures hyperthermia-induced seizures 



We thank Leticia Neri, Magdalena Briones and Héctor Vázquez for their excellent technical assistance. Isabel Pérez Montfort corrected the English version of the manuscript. This study was supported by a grant from Coordination of Research in Health from Mexican Institute of Social Security (grant no. FP-2002/103) and CONACyT (grant 45943-M).


  1. Baram, T. Z., Gerth, A., and Schultz, L. (1997). Febrile seizures: An appropriate-aged model suitable for long-term studies. Dev. Brain Res. 98:265–270.CrossRefGoogle Scholar
  2. Barr, W. B., Ashtari, M., and Schaul, N. (1997). Bilateral reductions in hippocampal volume in adults with epilepsy and a history of febrile seizures. J. Neurol. Neurosurg. Psych. 63:461–467.CrossRefGoogle Scholar
  3. Bear, J., and Lothman, E. W. (1993). An in vitro study of focal epileptogenesis in combined hippocampal-parahippocampal slices. Epilepsy Res. 14:183–193.PubMedCrossRefGoogle Scholar
  4. Bodnoff, S. R., Suranyi-Cadotte, B. E., Quirion, R., and Meaney, M. J. (1989). Role of the central benzodiazepine receptor system in behavioral habituation to novelty. Behav. Neurosci. 103:209–212.PubMedCrossRefGoogle Scholar
  5. Bower, S. P. C., Kilpatrick, C. J., Vogrin, J. S., Morris, K., and Cook, M. J. (2000). Degree of hippocampal atrophy is not related to a history of febrile seizures in patients with proved hippocampal sclerosis. J. Neurol. Neurosurg. Psych. 69:733–738.CrossRefGoogle Scholar
  6. Bowser, D. N., Wagner, D. A., Czajkowski, C., Cromer, B. A., Parker, M. W., Wallace, R. H., Harkin, L. A., Mulley, J. C., Marini, C., Berkovic, S. F., Williams, D. A., and Jones, M. V. (2002). Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation (γ2(R43Q)) found in human epilepsy. PNAS 99:15170–15175.PubMedCrossRefGoogle Scholar
  7. Brooks-Kayal, A. R., Shumate, M. D., Jin, H., Rikhter, T. Y., Kelly, M. E., and Coulter, D. A. (2001). γ-Aminobutyric acidA receptor subunit expression predicts functional changes in hippocampal dentate granule cells during postnatal development. J. Neurochem. 77:1266–1278.PubMedCrossRefGoogle Scholar
  8. Cendes, F., Andermann, F., Dubeau, F., Gloor, P., Evans, A., Jones-Gotman, M., Olivier, A., Andermann, E., Robitaille, Y., Lopes-Cendes, I., Peters, T., and Melanson, D. (1993). Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures and temporal lobe epilepsy: An MRI volumetric study. Neurology 43:1083–1087.PubMedGoogle Scholar
  9. Chang, Y. C., Huang, A. M., Kuo, Y. M., Wang, S. T., Chang, Y. Y., and Huang, C. C. (2003). Febrile seizures impair memory and cAMP response-element binding protein activation. Ann. Neurol. 54:706–718.PubMedCrossRefGoogle Scholar
  10. Chapillon, P., Patin, V., Vincent, A., and Caston, J. (2002). Effects of pre- and postnatal stimulation on developmental, emotional, and cognitive aspects in rodents: A review. Dev. Psychobiol. 41:373–387.PubMedCrossRefGoogle Scholar
  11. Chen, K., Aradi, I., Thon, N., Eghabal-Ahmadi, M., Baram, T. Z., and Soltesz, I. (2001). Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat. Med. 7:331–337.PubMedCrossRefGoogle Scholar
  12. Chen, K., Baram, T. Z., and Soltesz, I. (1999). Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat. Med. 5:888–894.PubMedCrossRefGoogle Scholar
  13. Consensus Development Panel (1980). Febrile seizures: Long-term management of children with fever-associated seizures. Pediatrics 66:1009–1012.Google Scholar
  14. Depaulis, A., Vergnes, M., and Marescaux, C. (1994). Endogenous control of epilepsy: The nigral inhibitory system. Prog. Neurobiol. 42:33–52.PubMedCrossRefGoogle Scholar
  15. Dube, C., Chen, K., Eghbal-Ahmadi, M., Brunson, K., Soltesz, I., and Baram, T. Z. (2000). Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann. Neurol. 47:336–344.PubMedCrossRefGoogle Scholar
  16. Dzhala, V. I., and Staley, K. J. (2003). Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus. J. Neurosci. 23:1840–1846.PubMedGoogle Scholar
  17. Falconer, M. A., Serafetinides, E. A., and Corsellis, J. A. (1964). Etiology and pathogenesis of temporal lobe epilepsy. Arch. Neurol. 10:233–248.PubMedGoogle Scholar
  18. Farabollini, F., Fluck, E., Albonetti, M. E., and File, S. E. (1996). Sex differences in benzodiazepine binding in the frontal cortex and amygdala of the rat 24 hours after restraint stress. Neurosci. Lett. 218:177–180.PubMedCrossRefGoogle Scholar
  19. Fujiwara-Tsukamoto, Y., Isomura, I., Nambu, A., and Takada, M. (2003). Excitatory GABA input directly drives seizure-like rhytmic synchronization in mature hippocampal CA1 pyramidal cells. Neuroscience 119:265–275.PubMedCrossRefGoogle Scholar
  20. Goddard, G. V., McIntyre, D. C., and Leech, C. K. (1969). A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25:295–330.PubMedCrossRefGoogle Scholar
  21. Harkin, L. A., Bowser, D. N., Dibbens, L. M., Singh, R., Phillips, F., Wallace, R. H., Richards, M. C., Williams, D. A., Mulley, J. C., Berkovic, S. F., Scheffer, I. E., and Petrou, S. (2002). Truncation of the GABAA-receptor γ2 subunit in a family with generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet. 70:530–536.PubMedCrossRefGoogle Scholar
  22. Harvey, A. S., Grattan-Smith, J. D., Desmond, P. M., Chow, C. W., and Berkovic, S. F. (1995). Febrile seizures and hippocampal sclerosis: Frequent and related findings in intractable temporal lobe epilepsy of childhood. Pediatr. Neurol. 12:201–206.PubMedCrossRefGoogle Scholar
  23. Hayashi, T. (1952). The efferent pathway of epileptic seizures for the face following cortical simulation differs from that for the limbs. Jpn. J. Physiol. 3:306–321.Google Scholar
  24. Jinnai, D., Yoshida, T., Sonji, T., and Kosaka, F. (1954). Experimental studies on the march of spasm during an epileptic convulsion. Acta Medica Okayama. 8:26–29.Google Scholar
  25. Knudsen, F. U. (1996). Febrile seizures-treatment and outcome. Brain Dev. 18:438–449.PubMedCrossRefGoogle Scholar
  26. Kornelsen, R. A., Boon, F., Leung, L. S., and Cain, D. P. (1996). The effects of a single neonatally induced convulsion on spatial navigation, locomotor activity and convulsion susceptibility in the adult rat. Brain Res. 706:155–159.PubMedCrossRefGoogle Scholar
  27. Leidenheimer, N. J., Machu, T. K., Endo, S., Olsen, R. W., Harris, R. A., and Browning, M. D. (1991). Cyclic AMP-dependent protein kinase decreases gamma-aminobutyric acidA receptor-mediated 36Cl-uptake by brain microsacs. J. Neurochem. 57:722–725.PubMedCrossRefGoogle Scholar
  28. Liebregts, M. T., McLachlan, R. S., and Leung, L. S. (2002). Hyperthermia induces age-dependent changes in rat hippocampal excitability. Ann. Neurol. 52:318–326.PubMedCrossRefGoogle Scholar
  29. Lynch, M., Sayin, U., Bownds, J., Janumpalli, S., and Sutula, T. (2000). Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur. J. Neurosci. 12:2252–2264.PubMedCrossRefGoogle Scholar
  30. McIntosh, J., Anisman, H., and Merali, Z. (1999). Short- and long periods of neonatal maternal separation differentially affect anxiety and feeding in adult rats: gender-dependent effects. Dev. Brain Res. 113:97–106.CrossRefGoogle Scholar
  31. Moshé, S. L. (2000). Seizures early in life. Neurology 55:S15–S20.PubMedGoogle Scholar
  32. Moshé, S. L., Albala, B. J., Ackermann, R. F., and Engel, J., Jr. (1983). Increased seizure susceptibility of the immature brain. Dev. Brain Res. 7:81–85.CrossRefGoogle Scholar
  33. Moshé, S. L., and Sperber, E. F. (1990). Substantia nigra-mediated control of generalized seizures. In: Gloor, G., and Naquet, R., (eds.), Generalized Epilepsy: Cellular, Molecular, and Pharmacological Approaches. Birkhauser Inc., Boston, pp. 355–367.Google Scholar
  34. Nadler, J. V. (1979). Kainic acid: Neurophysiological and neurotoxic actions. Life Sci. 24:289–300.PubMedCrossRefGoogle Scholar
  35. Nelson, K. B., and Ellenberg, J. H. (1976). Predictors of epilepsy in children who have experienced febrile seizures. N. Engl. J. Med. 295:1029–1033.PubMedCrossRefGoogle Scholar
  36. Nitecka, L., Tremblay, E., Charton, G., Bouillot, J. P., Berger, M. L., and Ben-Ari, Y. (1984). Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae. Neuroscience 13:1073–1094.PubMedCrossRefGoogle Scholar
  37. Nobrega, J. N., Kish, S. J., and Burnham, W. M. (1989). Autoradiographic analysis ob benzodiazepina binding in entorhinal-kindled rat brains. Brain Res. 498:315–322.PubMedCrossRefGoogle Scholar
  38. Olsen, R. W., McCabe, R. T., and Wamsley, J. K. (1990). GABAA receptor subtypes: Autoradiographic comparison of GABA, benzodiazepine, and convulsivant binding sites in the rat central nervous system. J. Chem. Neuroanat. 3:59–76.PubMedGoogle Scholar
  39. Paxinos, G., and Watson, C. (1998). The rat brain in stereotaxic coordinates. In Paxino (ed.), Academic Press, London UK.Google Scholar
  40. Peterson, S. L., Armstrong, J. J., and Walker, M. K. (2000). Focal microinjection of carbachol into the periaqueductal gray induces seizures in the forebrain of the rat. Epilepsy Res. 42:169–81.PubMedCrossRefGoogle Scholar
  41. Pisa, M., Sanber, P. R., Corcoran, M. E., and Fibiger, H. C. (1980). Spontaneously recurrent seizures after intracerebral injections of kainic acid in rat: A possible model of human temporal lobe epilepsy. Brain Res. 200:481–487.PubMedCrossRefGoogle Scholar
  42. Racine, R. J. (1972). Modification of seizures activity by electrical stimulation: II. Motor seizure. Electroenceph. Clin. Neurophysiol. 32:281–294.PubMedCrossRefGoogle Scholar
  43. Rocha, L., Ackerman, R. F., and Engel, J., Jr. (1996a). Chronic and single administration of pentylenetetrazol mofies benzodiazepine receptor-binding: An autoradiographic study. Epilepsy Res. 24:65–72.PubMedCrossRefGoogle Scholar
  44. Rocha, L., Ackermann, R. F., and Engel, J., Jr. (1996b). Effects of chronic morphine pretreatment on amygdaloid kindling development, postictal seizure suppression and benzodiazepine receptor binding in rats. Epilepsy Res. 23:225–233.PubMedCrossRefGoogle Scholar
  45. Rocha, L., Ackermann, R. F., Chugani, H. T., and Engel, J., Jr. (1994). Chronic pretreatment with naloxone modifies benzodiazepine receptor binding in amygdaloid kindled rats. Epilepsy Res. 17:135–144.PubMedCrossRefGoogle Scholar
  46. Rocha, L., González-Trujano, M. E., Jiménez, G., Gaona, A., and Ondarza, R. (2000). Characterization of benzodiazepine receptor binding in immature rat brain after kainic acid administration. Epilepsia 41:S44–S47.PubMedCrossRefGoogle Scholar
  47. Rocha, L., and Ondarza-Rovira, R. (1999). Characterization of benzodiazepine receptor binding following kainic acid administration: an autoradiography study in rats. Neurosci Lett. 262:211–214.PubMedCrossRefGoogle Scholar
  48. Rocha, L., Tatsukawa, K., Chugani, H. T., and Engel, J. Jr. (1993). Benzodiazepine receptor binding following chronic treatment with naloxone, morphine and met-enkephalin in normal rats. Brain Res. 612:247–252.PubMedCrossRefGoogle Scholar
  49. Schwarzer, C., Tsunashima, K., Wanzenbock, C., Fuchs, K., Sieghart, W., and Sperk, G. (1997). GABA (A) receptor subunits in the rat hippocampus II: Altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience 80:1001–1017.PubMedCrossRefGoogle Scholar
  50. Shin, C., Pedersen, H. B., and McNamara, J. O. (1985). γ-Aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: A quantitative radiohistochemical study. J. Neurosci. 5:2696–2701.PubMedGoogle Scholar
  51. Skerrit, J. H., Willow, M., and Johnston, G. A. (1983). Contrasting effects of a convulsant (CHEB) and an anticonvulsant barbiturate (phenobarbitona) on amino acid release from rat brain slices. Brain Res. 258:271–276.CrossRefGoogle Scholar
  52. Soubrie, P., Thiebot, M. H., Jobert, A., Montastruc, J. L., Hery, F., and Hamon, M. (1980). Decreased convulsant potency of picrotoxin and pentetrazol and enhanced [3H]flunitrazepam cortical binding following stressful manipulations in rats. Brain Res. 189:505–517.PubMedCrossRefGoogle Scholar
  53. Staley, K. J., Soldo, B. L., and Proctor, W. R. (1995). Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269:977–981.PubMedCrossRefGoogle Scholar
  54. Toth, Z., Yan, X. X., Haftoglou, S., Ribak, C. E., and Baram, T. Z. (1998). Seizure-induced neuronal injury: Vulnerability to febrile seizure in an immature rat model. J. Neurosci. 18:4285–4294.PubMedGoogle Scholar
  55. Trinka, E., Unterrainer, J., Haberlandt, E., Luef, G., Unterberger, I., Niedermüller, U., Hffner, B., and Bauer, G. (2002). Childhood febrile convulsions-wich factors determine the subsequent epilepsy syndrome? A retrospective study. Epilepsy Res. 50:283–292.PubMedCrossRefGoogle Scholar
  56. VanLandingham, K. E., Heinz, E. R., Cavazos, J. E., and Lewis, D. V. (1998). Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann. Neurol. 43:413–426.PubMedCrossRefGoogle Scholar
  57. Veliskova, J., Velisek, L., Nunes, M. L., and Moshé, S. L. (1996). Developmental regulation of regional functionality of substantia nigra GABAA receptors involved in seizures. Eur. J. Pharmacol. 309:167–173.PubMedCrossRefGoogle Scholar
  58. Wallace, R. H., Marini, C., Petrou, S., Harkin, L. A., Bowser, D. N., Panchal, R. G., Williams, D. A., Sutherland, G. R., Mulley, J. C., Scheffer, I. E., and Berkovic, S. F. (2001). Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat. Genet. 28:49–52.PubMedCrossRefGoogle Scholar
  59. Wu, J., Ellsworth, K., Ellsworth, M., Scroeder, K. M., Smith, K., and Fisher, R. S. (2004). Abnormal benzodiazepine and zinc modulation of GABAA receptors in an acquired absence epilepsy model. Brain Res. 1013:230–240.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. González Ramírez
    • 1
  • S. Orozco Suárez
    • 1
  • H. Salgado Ceballos
    • 1
  • A. Feria Velasco
    • 2
  • L. Rocha
    • 3
  1. 1.Unidad de Investigación Médica en Enfermedades NeurológicasH. EspecialidadesCol. Doctores México D.F.MéxicoUSA
  2. 2.Unidad de Morfología de Alta Resolución CUCBAUniversidad de GuadalajaraJal. MéxicoMéxicoUSA
  3. 3.Depto. de FarmacobiologíaCentro de Investigación y de Estudios AvanzadosMéxico D.F.USA

Personalised recommendations