Cellular and Molecular Neurobiology

, Volume 26, Issue 3, pp 307–319 | Cite as

Glucose Deprivation Activates Diversity of Potassium Channels in Cultured Rat Hippocampal Neurons

  • Myrian Velasco
  • Esperanza García
  • Carlos G. Onetti

1. Glucose is one of the most important substrates for generating metabolic energy required for the maintenance of cellular functions. Glucose-mediated changes in neuronal firing pattern have been observed in the central nervous system of mammals. K+ channels directly regulated by intracellular ATP have been postulated as a linkage between cellular energetic metabolism and excitability; the functional roles ascribed to these channels include glucose-sensing to regulate energy homeostasis and neuroprotection under energy depletion conditions. The hippocampus is highly sensitive to metabolic insults and is the brain region most sensitive to ischemic damage. Because the identity of metabolically regulated potassium channels present in hippocampal neurons is obscure, we decided to study the biophysical properties of glucose-sensitive potassium channels in hippocampal neurons.

2. The dependence of membrane potential and the sensitivity of potassium channels to glucose and ATP in rat hippocampal neurons were studied in cell-attached and excised inside-out membrane patches.

3. We found that under hypoglycemic conditions, at least three types of potassium channels were activated; their unitary conductance values were 37, 147, and 241 pS in symmetrical K+, and they were sensitive to ATP. For K+ channels with unitary conductance of 37 and 241, when the membrane potential was depolarized the longer closed time constant diminished and this produced an increase in the open-state probability; nevertheless, the 147-pS channels were not voltage-dependent.

4. We propose that neuronal glucose-sensitive K+ channels in rat hippocampus include subtypes of ATP-sensitive channels with a potential role in neuroprotection during short-term or prolonged metabolic stress.


Glucose Potassium channels ATP Hippocampal neurons 



The authors wish to express their gratitude to Adriana Hernández for technical assistance. This work has been partially supported by grant 229/03 from the “Fondo Ramón Álvarez-Buylla de Aldana,” Universidad de Colima, México to C. G. Onetti.


  1. Aguilar-Bryan, L., and Bryan, J. (1999). Molecular biology of adenosine triphosphate-senstive potassium channels. Endocr. Rev. 20:101–135.PubMedCrossRefGoogle Scholar
  2. Aguilar-Bryan, L., Clement, J. P. T., Gonzalez, G., Kunjilwar, K., Babenko, A., and Bryan, J. (1998). Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78:227–245.PubMedGoogle Scholar
  3. Allen, T. G. J., and Brown, D. A. (2004). Modulation of the excitability of cholinergic basal forebrain neurones by KATP channels. J. Physiol. 554(2):353–370.PubMedCrossRefGoogle Scholar
  4. Ashcroft, F. M. (1988). Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11:97–118.PubMedCrossRefGoogle Scholar
  5. Ashcroft, F. M., and Gribble, F. M. (1998). Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci. 21(7):288–294.PubMedCrossRefGoogle Scholar
  6. Babenko, A. P., Aguilar-Bryan, L., and Bryan, J. (1998). A view of SUR/Kir6.X, KATP channels. Annu. Rev. Physiol. 60:667–687.PubMedCrossRefGoogle Scholar
  7. Ballanyi, K. (2004). Protective role of neuronal KATP channels in brain hypoxia. J. Exp. Biol. 207(18):3201–3212.PubMedCrossRefGoogle Scholar
  8. Blondeau, N., Plamondon, H., Richelme, C., Heurteaux, C., and Lazdunski, M. (2000). KATP channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience 100(3):465–474.PubMedCrossRefGoogle Scholar
  9. Dunn-Meynell, A. A., Routh, V. H., McArdle, J. J., and Levin, B. E. (1997). Low-affinity sulfonylurea binding sites reside on neuronal cell bodies in the brain. Brain Res. 745:1–9.PubMedCrossRefGoogle Scholar
  10. Fujimura, N., Tanaka, E., Yamamoto, S., Shigemori, M., and Higashi, H. (1997). Contribution of ATP-sensitive potassium channels to hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro. J. Neurophysiol. 77:378–385.PubMedGoogle Scholar
  11. Griesemer, D., Zawar, C., and Neumcke, B. (2002). Cell-type specific depression of neuronal excitability in rat hippocampus by activation of ATP-sensitive potassium channels. Eur. Biophys. J. 31:467–477.PubMedCrossRefGoogle Scholar
  12. Hall, A. C., Hoffmaster, R. M., Stern, E. L., Harrington, M. E., and Bickar, D. (1997). Suprachiasmatic nucleus neurons are glucose sensitive. J. Biol. Rhythms 12(5):338–400.Google Scholar
  13. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.PubMedCrossRefGoogle Scholar
  14. Herteaux, C., Lauritzen, I., Widmann, C., and Lazdunski, M. (1995). Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc. Natl. Acad. Sci. USA 92:4666–4670.CrossRefGoogle Scholar
  15. Ibrahim, N., Bosch, M. A., Smart, J. L., Qiu, J., Rubinstein, M., Ronnekleiv, O. K., Low, M. J., and Kelly, M. J. (2003). Hypothalamic proopiomelanocortin neurons are glucose responsive and express KATP channels. Endocrinology 144:1331–1340.PubMedCrossRefGoogle Scholar
  16. Inagaki, N., Tsuura, Y., Namba, N., Masuda, K., Gonoi, T., Horie, M., Seino, Y., Mizuta, M., and Seino, S. (1995). Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J. Biol. Chem. 270:5691–5694.PubMedCrossRefGoogle Scholar
  17. Jahr, C. E., and Stevens, C. F. (1987). Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325:522–525.PubMedCrossRefGoogle Scholar
  18. Jiang, C., and Haddad, G. G. (1997). Modulation of K+ channels by intracellular ATP in human neocortical neurons. J. Neurophysiol. 77:93–102.PubMedGoogle Scholar
  19. Jiang, C., Sigworth, F. J., and Haddad, G. G. (1994). Oxygen deprivation activates an ATP-inhibitable K+ channel in substantia nigra neurons. J. Neurosci. 14(9):5590–5602.PubMedGoogle Scholar
  20. Kakeim, M. and Noma, A. (1984). Adenosine-5´-triphosphate-sensitive single potassium channel in the atrioventricular node cell of the rabbit heart. J. Physiol. 352:265–284.Google Scholar
  21. Karschin, C., Ecke, C., Ashcroft, F. M., and Karschin, A. (1997). Overlaping distribution of KATP channel-forming Kir 6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 401:59–64.PubMedCrossRefGoogle Scholar
  22. Lee, K., Dixon, K. A., Freeman, C. T., and Richardson, J. P. (1998). Identification of an ATP-sensitive potassium channel current in rat striatal cholinergic interneurones. J. Physiol. 510:441–453.PubMedCrossRefGoogle Scholar
  23. Miki, T., Liss, B., Minami, K., Shiuchi, T., Saraya, A., Kashima, Y., Horiuchi, M., Ashcroft, F., Minokoshi, Y., Roeper, J., and Seino, S. (2001). ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat. Neurosci. 4:507–512.PubMedGoogle Scholar
  24. Mironov, S. L., Langohr, K., Haller, M., and Richter, D. W. (1998) Hypoxia activates ATP-dependent potassium channels in inspiratory neurons of neonatal mice. J. Physiol. 509:755–766.PubMedCrossRefGoogle Scholar
  25. Nakagawa, I., Ogawa, Y., Noriyama, Y., Nakase, H., Yamashita, M., and Sakaki, T. (2003). Chemical preconditioning prevents paradoxical increase in glutamate release during ischemia by activating ATP-dependent potassium channels in gerbil hippocampus. Exp. Neurol. 183:180–187.PubMedCrossRefGoogle Scholar
  26. Noma, A., and Takano, M. (1991). The ATP-sensitive K+ channel. Jpn. J. Physiol. 41:177–187.PubMedCrossRefGoogle Scholar
  27. Qin, D. Y., Tanako, M., and Noma, A. (1989). Kinetics of ATP-sensitive K+ channel revealed with oil-gate concentration jump method. Am. J. Physiol. 257:H1624–H1633.PubMedGoogle Scholar
  28. Quayle, J. M., Standen, N. B., and Stanfield, P. R. (1988). The voltage-dependent block of ATP-sensitive potassium channels of frog skeletal muscle by cesium and barium ions. J. Physiol. 405:677–697.PubMedGoogle Scholar
  29. Routh, V. H., McArdle, J. J., and Levin, B. E. (1997). Phosphorylation modulates the activity of the ATP-sensitive K+ channel in the ventromedial hypothalamic nucleus. Brain Res. 778:107–119.PubMedCrossRefGoogle Scholar
  30. Seino, S., and Miki, T. (2003). Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol. 81:133–176.PubMedCrossRefGoogle Scholar
  31. Smith, M. L., Auer, R. N., and Siesjo, B. K. (1984). The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol. 64:319–332.PubMedCrossRefGoogle Scholar
  32. Spruce, A. E., Standen, N. B., and Stanfield, P. R. (1985). Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316:736–738.PubMedCrossRefGoogle Scholar
  33. Stanford, I. M., and Lacey, M. G. (1995). Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular Adenosine triphosphate (ATP) and the sulfonylurea tolbutamide and glibenclamide. J. Neurosci. 15(6):4651–4657.PubMedGoogle Scholar
  34. Stanford, I. M., and Lacey, M. G. (1996). Electrophysiological investigation of adenosine trisphosphate-sensitive potassium channels in the rat substantia nigra pars reticulata. Neuroscience 74:499–509.PubMedCrossRefGoogle Scholar
  35. Takaba, H., Nagao, T., Yao, H., Kitazono, T., Ibayashi, S., and Fujishima, M. (1997). An ATP-sensitive potassium channel activator reduces infarct volume in focal cerebral ischemia in rats. Am. J. Physiol. 273:R583–R586.PubMedGoogle Scholar
  36. Tang, X. D., Santarelli, L. C., Heinemann, S. H., and Hoshi, T. (2004). Metabolic regulation of potassium channels. Annu. Rev. Physiol. 66:131–159.PubMedCrossRefGoogle Scholar
  37. Tromba, C., Salvaggio, A., Racagni, G., and Volterra, A. (1992). Hypoglycaemia-activated K+ channels in hippocampal neurons. Neurosci. Lett. 143:185–189.PubMedCrossRefGoogle Scholar
  38. Tromba, C., Salvaggio, A., Racagni, G., and Volterra, A. (1994). Hippocampal hypoglycaemia-activated K+ channels: single-channel analysis of glucose and voltage dependence. Pflugers Arch. 429:58–63.PubMedCrossRefGoogle Scholar
  39. Vergara, C., Latorre, R., Marrion, N. V., and Adelman, J. P. (1998). Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8:321–329.PubMedCrossRefGoogle Scholar
  40. Zawar, C., Plant, T. D., Schirra, C., Konnerth, A., and Neumcke, B. (1999). Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. 514:327–341.PubMedCrossRefGoogle Scholar
  41. Zini, S., Tremblay, E., Pollard, H., Moreau, J., and Ben-Ari, Y. (1993). Regional distribution of sulfonylurea receptors in the brain of rodent and primate. Neuroscience 55:1085–1091.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Myrian Velasco
    • 1
  • Esperanza García
    • 1
  • Carlos G. Onetti
    • 1
  1. 1.Centro de Investigaciones BiomédicasUniversidad de ColimaColimaMéxico

Personalised recommendations