Advertisement

Cellular and Molecular Neurobiology

, Volume 25, Issue 6, pp 1043–1050 | Cite as

The Postnatal Development of the Cerebellum— A fMRI and Silver Study

  • Marong Fang
  • Lihong Zhang
  • Jicheng Li
  • Chunmei Wang
  • Charlotte H. Y. Chung
  • Sen Mun Wai
  • David T. Yew
Original Research

Summary

The aim of this study was to evaluate the postnatal development of the cerebella of the pig and to compare this with the activation of the fMRI. The cells in the cerebella were studied by silver technique and the activation of the fMRI in the cerebella was initiated by flexion and extension of the hind paw. Our results showed an increase of the branching of the cells of the cerebellar cortex postnatally, coordinated with registration of fMRI active sites in the cerebella at 6-month postnatal. We concluded that the full maturation of the cerebella was around 6-month postnatal in the pig.

Key Words

cerebellum pig silver fMRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badger, T. M., Tumbleson, M. E., and Hutcheson, D. P. (1972). Protein-calorie malnutrition in young Sinclair (S-1) miniature swine. Growth 36:235–245.PubMedGoogle Scholar
  2. Chang, S. J., Kirksey, A., and Morre, D. M. (1981). Effects of vitamin B-6 deficiency on morphological changes in dendritic trees of Purkinje cells in developing cerebellum of rats. J. Nutr. 111:848–857.PubMedGoogle Scholar
  3. Dickerson, J. W., Merat, A., and Widdowson, E. M. (1971). The effect of development on the gangliosides of pig brain. Biochem. J. 125:40P–41P.Google Scholar
  4. Done, J. T., and Hebert, C. N. (1968). The growth of the cerebellum in the fetal pig. Res. Vet. Sci. 9:143–148.PubMedGoogle Scholar
  5. Dumont, I., Hou, X., Hardy, P., Peri, K. G., Beauchamp, M., Najarian, T., Molotchnikoff, S., Varma, D. R., and Chemtob, S. (1999). Developmental regulation of endothelial nitric oxide synthase in cerebral vessels of newborn pig by prostaglandin E(2). J. Pharmacol. Exp. Ther. 291:627–633.PubMedGoogle Scholar
  6. Erlander, M. G., Parliman, J. A., Draper, D. D., Christian, L. L., Murrin, L. C., Pfeiffer, R. F., and Beitz, D. C. (1985). Effects of L-dopa supplementation on concentrations of brain catechols, dopamine receptor binding, and the incidence of pale, soft, and exudative meat in stress-susceptible pigs. J. Anim. Sci. 61:914–923.PubMedGoogle Scholar
  7. Fang, M. R., Li, J. C., Gong, X. Y., Antonio, G. E., Lee, F., Kwong, W. H., Wai, S. M., and Yew, D. T. (2005). Myelination of the pig/s brain—a correlated MRI and histological study. Neurosignal. 14:102–108.Google Scholar
  8. Foster, K. A., Colditz, P. B., Lingwood, B. E., Burke, C., Dunster, K. R., and Roberts, M. S. (2001). An improved survival model of hypoxia/ischemia in the piglet suitable for neuroprotection studies. Brain Res. 919:122–131.PubMedCrossRefGoogle Scholar
  9. Larsell, O. (1954). The development of the cerebellum of the pig. Anat. Rec. 118:73–107.PubMedCrossRefGoogle Scholar
  10. Li, H. P., Miki, T., Gu, H., Satriotomo, I., Mastumoto, Y., Kuma, H., Gonzalez, D., Bedi, K. S., Suwaki, H., and Takeuchi, Y. (2002). The effect of the timing of prenatal X-irradiation on Purkinje cell numbers in rat cerebellum. Brain Res. Dev. Brain Res. 139:159–166.PubMedGoogle Scholar
  11. Makori, N., Peterson, P. E., and Hendrickx, A. G. (2001). 13-cis-retinoic acid causes patterning defects in the early embryonic rostral hindbrain and abnormal development of the cerebellum in the macaque. Teratology 63:65–76.PubMedCrossRefGoogle Scholar
  12. Merat, A., and Dickerson, J. W. (1973). The effect of development on the gangliosides of rat and pig brain. J. Neurochem. 20:873–880.PubMedGoogle Scholar
  13. Pond, W. G., Boleman, S. L., Fiorotto, M. L., Ho, H., Knabe, D. A., Mersmann, H. J., Savell, J. W., and Su, D. R. (2000). Perinatal ontogeny of brain growth in the domestic pig. Proc. Soc. Exp. Biol. Med. 223:102–108.PubMedCrossRefGoogle Scholar
  14. Pond, W. G., Strachan, D. N., Sinha, Y. N., Walker, E. F. Jr., Dunn, J. A., and Barnes, R. H. (1969). Effect of protein deprivation of swine during all or part of gestation on birth weight, postnatal growth rate, and nucleic acid content of brain and muscle of progeny. J. Nutr. 99:61–67.PubMedGoogle Scholar
  15. Pope, A. M., Heavner, J. E., Guarnieri, J. A., and Knobloch, C. P. (1986). Trichlorfon-induced congenital cerebellar hypoplasia in neonatal pigs. J. Am. Vet. Med. Assoc. 189:781–783.PubMedGoogle Scholar
  16. Sisken, B. F., Zwick, M., Hyde, J. F., and Cottrill, C. M. (1993). Maturation of the central nervous system: Comparison of equine and other species. Equine Vet. J. Suppl. (14):31–34.PubMedGoogle Scholar
  17. Wawrzyniak, M., and Niespodziewanski, M. (1967). Acetylcholinesterase activity in the region of the internal grey matter of the pig cerebellum during ontogenesis. Folia Histochem. Cytochem. (Krakow) 5:389–398.Google Scholar
  18. Yue, X., Mehmet, H., Penrice, J., Cooper, C., Cady, E., Wyatt, J. S., Reynolds, E. O., Edwards, A. D., and Squier, M. V. (1997). Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischemia. Neuropathol. Appl. Neurobiol. 23:16–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Marong Fang
    • 1
  • Lihong Zhang
    • 2
  • Jicheng Li
    • 1
  • Chunmei Wang
    • 3
  • Charlotte H. Y. Chung
    • 3
  • Sen Mun Wai
    • 3
  • David T. Yew
    • 3
  1. 1.Department of AnatomyMedical School of Zhejiang UniversityHangzhouP.R. China
  2. 2.Department of NeurologyThe First Hospital of Hebei UniversityP.R. China
  3. 3.Department of AnatomyChinese University of Hong KongShatin, New TerritoriesP.R. China

Personalised recommendations