Skip to main content
Log in

Cyclic Nucleotides Induce Long-Term Augmentation of Glutamate-Activated Chloride Current in Molluscan Neurons

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Literature data indicate that serotonin induces the long-term potentiation of glutamate (Glu) response in molluscan neurons. The aim of present work was to elucidate whether cyclic nucleotides can cause the same effect.

  2. 2.

    Experiments were carried out on isolated neurons of the edible snail (Helix pomatia) using a two-microelectrode voltage-clamp method.

  3. 3.

    In the majority of the cells examined, the application of Glu elicited a Cl-current. The reversal potential (Er) of this current lied between −35 and −55 mV in different cells.

  4. 4.

    Picrotoxin, a blocker of Cl-channels, suppressed this current equally on both sides of Er. Furosemide, an antagonist of both Cl-channels and the Na+/K+/Cl-cotransporter, had a dual effect on Glu-response: decrease in conductance, and shift of Er to negative potentials.

  5. 5.

    A short-term (2 min) cell treatment with 8-Br-cAMP or 8-Br-cGMP caused long-term (up to 30 min) change in Glu-response. At a holding potential of −60 mV, which was close to the resting level, an increase in Glu-activated inward current was observed. This potentiation seems to be related to the right shift of Er of Glu-activated Cl-current rather than to the increase in conductance of Cl-channels. The blocking effect of picrotoxin rested after 8-Br-cAMP treatment.

  6. 6.

    The change in the Cl-homeostasis as a possible mechanism for the observed effect of cyclic nucleotides is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov, I., Antonova, I., Kandel, E. R., and Hawkins, R. D. (2003). Activity-dependent presynaptic facilitation and Hebbian LTP are both required and interact during classical conditioning in Aplysia. Neuron 37:135–147.

    Article  CAS  PubMed  Google Scholar 

  • Bachmann, O., Wuchner, K., Rossmann, H., Leipziger, J., Osikowska, B., Colledge, W. H., Ratcliff, R., Evans, M. J., Gregor, M., and Seilder, U. (2003). Expression and regulation of the Na+-K+-2Cl- cotransporter NKCC1 in the normal and CFTR-deficient murine colon. J. Physiol. 549:525–536.

    Article  CAS  PubMed  Google Scholar 

  • Balaban, P. M., Korshunova, T. A., and Bravarenko, N. L. (2004). Postsynaptic calcium contributes to reinforcement in a three-neuron network exhibiting associative plasticity. Eur. J. Neurosci. 19:227–233.

    Article  CAS  PubMed  Google Scholar 

  • Bolshakov, V. Y., Gapon, S., and Magazanik, L. G. (1991). Different types of glutamate receptors in isolated and identified neurons of the mollusc Planorbarius Corneus. J. Physiol. 439:15–35.

    CAS  PubMed  Google Scholar 

  • Borisova, O. V., and Skrebitsky, V. G. (1991). Long-term enhancement of synaptic efficiency in Helix brain. In: Sakharov, D., and Winlow, W. (eds.), Simpler Nervous Systems. Studies in Neuroscience, Manchester University Press, pp. 213–226.

  • Bravarenko, N. I., Korshunova, T. A., Malyshev, A. Y., and Balaban, P. M. (2003). Synaptic contact between mechanosensory neuron and withdrawal interneuron in terrestrial snail is mediated by L-glutamate-like transmitter. Neurosci. Lett. 341:237–240.

    Article  CAS  PubMed  Google Scholar 

  • Chitwood, R. A., Li, Q., and Glanzman, D. L. (2001). Serotonin facilitates AMPA-type responses in isolated siphon motor neurons of Aplysia in culture. J. Physiol. 534:501–510.

    Article  CAS  PubMed  Google Scholar 

  • Collin, C., Devane, W. A., Dahl, D., Lee, C.-J., Axelrod, J., and Alkon, D. (1995). Long-term synaptic transformation of hippocampal CA1 γ-aminobutyric acid synapses and the effect of anandamide. Proc. Natl. Acad. Sci. USA 92:10167–10171.

    CAS  PubMed  Google Scholar 

  • Dale, N., and Kandel, E. R. (1993). L-Glutamate may be the fast excitatory transmitter of Aplysia sensory neurons. Proc. Natl. Acad. Sci. USA 90:7163–7167.

    CAS  PubMed  Google Scholar 

  • Delpire, E. (2000). Cation-chloride cotransporters in neuronal communication. News Physiol. Sci. 15:309–312.

    CAS  PubMed  Google Scholar 

  • Delporte, C., Winand, J., Poloczek, P., and Christophe, J. (1993). Regulation of Na-K-Cl cotransport, Na, K-adenosine triphosphatase, and Na/H exchanger in human neuroblastoma NB-OK-1 cells by atrial natriuretic peptide. Endocrinology 133:77–82.

    Article  CAS  PubMed  Google Scholar 

  • Di Fulvio, M., Lincoln, T. M., Lauf, P. K., and Adragna, N. C. (2001). Protein kinase G regulate potassium chloride cotransporter-expression in primary cultures of rat vascular smooth muscle cells. J. Biol. Chem. 276:21046–21052.

    CAS  PubMed  Google Scholar 

  • Etter, A., Cully, D. F., Liu, K. K., Reiss, B., Vassilatis, D. K., Schaeffer, J. M., and Arena, J. P. (1999). Picrotoxin blockade of invertebrate glutamate-gated chloride channels: Subunit dependence and evidence for binding within the pore. J. Neurochem. 72:318–326.

    CAS  PubMed  Google Scholar 

  • Eusebi, F., Palmieri, P., and Picardo, M. (1978). Action of glutamic acid and of some glutamate analogues on the molluscan central neurons. Experientia 34:867–868.

    Article  CAS  PubMed  Google Scholar 

  • Gusev, P. A., and Alkon, D. L. (2001). Intracellular correlates of spatial memory acquisition in hippocampal slices: long-term disinhibition of CA1 pyramidal cells. J. Neurophysiol. 86:881–899.

    CAS  PubMed  Google Scholar 

  • Kehoe, J., and Vulfius, C. (2000). Independence of and interactions between GABA-, glutamate-, and acetylcholine-activated Cl conductance in Aplysia neurons. J. Neurosci. 20:8585–8596.

    CAS  PubMed  Google Scholar 

  • Lewin, M. R., and Walters, E. T. (1999). Cyclic GMP pathway is critical for inducing long-term sensitization of nociceptive sensory neurons. Nature Neurosci. 2:18–23.

    CAS  PubMed  Google Scholar 

  • Lytle, C. (1997). Activation of the avian erythrocyte Na-K-Cl cotransport protein by cell shrinkage, cAMP, fluoride, and calyculin-A involves phosphorylation at common sites. J. Biol. Chem. 272:15063–15077.

    Article  Google Scholar 

  • Lu, Y.-F., Kandel, E. R., and Hawkins, R. D. (1999). Nitric oxide signalling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurosci. 19:10250–10261.

    CAS  PubMed  Google Scholar 

  • Lu, Y.-F., and Hawkins, R. D. (2002). Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurophysiol. 88:1270–1278.

    CAS  PubMed  Google Scholar 

  • Milner, B., Squire, L. R., and Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron 20:445–468.

    Article  CAS  PubMed  Google Scholar 

  • Narumi, S., and Miyamoto, E. (1974). Activation and phosphorylation of carbonic anhydrase by adenosine 3′,5′-monophosphate-dependent protein kinases. Biochem. Biophys. Acta. 350:215–224.

    CAS  PubMed  Google Scholar 

  • Nicoll, R. A. (1978). The blockade of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide. J. Physiol. 283:121–132.

    CAS  PubMed  Google Scholar 

  • Niisato, N., Nishino, H., Nishio, K., and Marunaka, Y. (2004). Cross talk of cAMP and flavone in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells. Biochem. Pharmacol. 67:795–801.

    Article  CAS  PubMed  Google Scholar 

  • O'Donnel, M. E., and Owen, N. E. (1986). Role of cyclic GMP in atrial natriuretic factor stimulation of Na+,K+,Cl- cotransport in vascular smooth muscle cells. J. Biol. Chem. 261:15461–15466.

    Google Scholar 

  • Paulsen, O., and Moser, E. R. (1998). A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci. 21:273–278.

    Article  CAS  PubMed  Google Scholar 

  • Russel, J. M. (2000). Sodium-potassium-chloride cotransport. Physiol. Rev. 80:211–276.

    Google Scholar 

  • Sawada, M., Hara, N., Ito, I., and Maeno, T. (1984). Ionic mechanism of a hyperpolarizing glutamate effect on two identified neurons in the buccal ganglion of Aplysia. J. Neurosci. Res. 11:91–103.

    Article  CAS  PubMed  Google Scholar 

  • Son, H., Lu, Y.-F., Zhuo, M., Arancio, O., Kandel, E. R., and Hawkins, R. D. (1998). The specific role of cGMP in hippocampal LTP. Learn. Mem. 5:231–245.

    CAS  PubMed  Google Scholar 

  • Staley, K. J., Soldo, B. L., and Proctor, W. R. (1995). Ionic mechanisms of neuronal excitation by inhibitory CABAA receptors. Science 269:977–981.

    CAS  PubMed  Google Scholar 

  • Sun, M.-K., and Alkon, D. L. (2002). Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends Pharmacol. Sci. 23:83–89.

    Article  CAS  PubMed  Google Scholar 

  • Yu, T. P., McKinney, S., Lester, H. A., and Davidson, N. (2001). Gamma-aminobutyric acid type A receptors modulate cAMP-mediated long-term potentiation and long-term depression at monosynaptic CA3-CA1 synapses. Proc. Natl. Acad. Sci. 98:5264–5269.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia V. Bukanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukanova, J.V., Solntseva, E.I. & Skrebitsky, V.G. Cyclic Nucleotides Induce Long-Term Augmentation of Glutamate-Activated Chloride Current in Molluscan Neurons. Cell Mol Neurobiol 25, 1185–1194 (2005). https://doi.org/10.1007/s10571-005-8371-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-8371-7

Keywords

Navigation