Cellular and Molecular Neurobiology

, Volume 25, Issue 2, pp 297–312 | Cite as

Synaptic and Extrasynaptic Secretion of Serotonin

  • Francisco F. De-Miguel
  • Citlali Trueta


Serotonin is a major modulator of behavior in vertebrates and invertebrates and deficiencies in the serotonergic system account for several behavioral disorders in humans.

The small numbers of serotonergic central neurons of vertebrates and invertebrates produce their effects by use of two modes of secretion: from synaptic terminals, acting locally in “hard wired” circuits, and from extrasynaptic axonal and somatodendritic release sites in the absence of postsynaptic targets, producing paracrine effects.

In this paper, we review the evidence of synaptic and extrasynaptic release of serotonin and the mechanisms underlying each secretion mode by combining evidence from vertebrates and invertebrates. Particular emphasis is given to somatic secretion of serotonin by central neurons.

Most of the mechanisms of serotonin release have been elucidated in cultured synapses made by Retzius neurons from the central nervous system of the leech. Serotonin release from synaptic terminals occurs from clear and dense core vesicles at active zones upon depolarization. In general, synaptic serotonin release is similar to release of acetylcholine in the neuromuscular junction.

The soma of Retzius neurons releases serotonin from clusters of dense core vesicles in the absence of active zones. This type of secretion is dependent of the stimulation frequency, on L-type calcium channel activation and on calcium-induced calcium release.

The characteristics of somatic secretion of serotonin in Retzius neurons are similar to those of somatic secretion of dopamine and peptides by other neuron types. In general, somatic secretion by neurons is different from transmitter release from clear vesicles at synapses and similar to secretion by excitable endocrine cells.


serotonin secretion exocytosis extrasynaptic secretion somatic secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arango, V., Underwood, M. D., and Mann, J. J. (2002). Serotonin brain circuits involved in major depression and suicide. Prog. Brain. Res. 136:443–453.PubMedGoogle Scholar
  2. Auger, C., and Marty, A. (2000). Quantal currents at single-site central synapses. J. Physiol. (Lond.) 526:3–11.CrossRefGoogle Scholar
  3. Baraban, J. M., and Aghajanian, G. K. (1981). Noradrenergic innervation of serotonergic neurons in the dorsal raphe: Demonstration by electron microscopic autoradiography. Brain. Res. 204:1–11.PubMedGoogle Scholar
  4. Baumann, P. A., and Waldmeier, P. C. (1984). Negative feedback control of serotonin release in vivo: Comparison of 5-hydroxyindolacetic acid levels measured by voltammetry in conscious rats and by biochemical technique. Neuroscience 11:195–204.PubMedGoogle Scholar
  5. Baumgarten, H. G., and Lachenmayer, L. (1985). Anatomical features and physiological properties of central serotonin neurons. 18(2):180–187.Google Scholar
  6. Beck, A., and Lohr, C. D. J. W. (2001). Calcium transients in subcompartments of the leech Retzius neuron as induced by single action potentials. J. Neurobiol. 48:1–18.PubMedGoogle Scholar
  7. Becquet, D., Faudon, M., and Hery, F. (1990). The role of serotonin release and autoreceptors in the dorsalis raphe nucleus in the control of serotonin release in the cat caudate nucleus. Neuroscience 39:639–647.PubMedGoogle Scholar
  8. Beltz, B., Eisen, J. S., Flamm, R., Harris-Warrick, R. M., Hooper, S. L., and Marder, E. (1984). Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Panulirus interruptus, Homarus americanus and Cancer irroratus). J. Exp. Biol. 109:35–54.PubMedGoogle Scholar
  9. Betz, W. J., and Bewick, G. S. (1992). Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255:200–203.PubMedGoogle Scholar
  10. Betz, W. J., Mao, F., and Bewick, G. S. (1992). Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J. Neurosci. 12:363–375.PubMedGoogle Scholar
  11. Blier, P., Ramdine, R., Galzin, A. M., and Langer, S. Z. (1989). Frequency-dependence of serotonin autoreceptor but not alpha 2-adrenoceptor inhibition of [3H]-serotonin release in rat hypothalamic slices. Naunyn. Schmiedebergs. Arch. Pharmacol. 339:60–64.PubMedGoogle Scholar
  12. Brieden, T., Ujeyl, M., and Naber, D. (2002). Psychopharmacological treatment of aggression in schizophrenic patients. Pharmacopsychiatry 35:83–89.PubMedGoogle Scholar
  13. Brodfuehrer, P. D., Debski, E. A., O’Gara, B. A., and Friesen, W. O. (1995). Neuronal control of leech swimming. J. Neurobiol. 27:403–418.PubMedGoogle Scholar
  14. Bruns, D., Engert, F., and Lux, H. D. (1993). A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo. Neuron 10:559–572.PubMedGoogle Scholar
  15. Bruns, D., and Jahn, R. (1995). Real-time measurement of transmitter release from single synaptic vesicles. Nature 377:62–65.PubMedGoogle Scholar
  16. Bruns, D., Riedel, D., Klingauf, J., and Jahn, R. (2000). Quantal release of serotonin. Neuron 28:205–220.PubMedGoogle Scholar
  17. Bunin, M. A., Prioleau, C., Mailman, R. B., and Wightman, R. M. (1998). Release and uptake rates of 5-hydroxytryptamine in the dorsal raphe and substantia nigra reticulata of the rat brain. J. Neurochem. 70:1077–1087.PubMedGoogle Scholar
  18. Bunin, M. A., and Wightman, R. M. (1998). Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: An investigation of extrasynaptic transmission. J. Neurosci. 18:4854–4860.PubMedGoogle Scholar
  19. Bunin, M. A., and Wightman, R. M. (1999). Paracrine neurotransmission in the CNS: Involvement of 5-HT. Trends. Neurosci. 22:377–382.PubMedGoogle Scholar
  20. Burrell, B. D., Sahley, C. L., and Muller, K. J. (2001). Non-associative learning and serotonin induce similar bi-directional changes in excitability of a neuron critical for learning in the medicinal leech. J. Neurosci. 21:1401–1412.PubMedGoogle Scholar
  21. Chazal, G., and Ralston, J. J. I. (1987). Serotonin-containing structures in the nucleus raphe dorsalis of the cat: An ultrastructural analysis of dendrites, presynaptic dendrites, and axon terminals. J. Comp. Neurol. 259:317–329.PubMedGoogle Scholar
  22. Chen, G., Gavin, P. F., Luo, G., and Ewing, A. G. (1995). Observation and quantitation of exocytosis from the cell body of a fully developed neuron in Planorbis corneus. J. Neurosci. 15:7747–7755.PubMedGoogle Scholar
  23. Coggeshall, R. E. (1972). Autoradiographic and chemical localization of 5-hydroxytryptamine in identified neurons in the leech. Anat. Rec. 172:489–498.PubMedGoogle Scholar
  24. Cooper, J. R., Bloom, F. E., and Roth, R. H. (1982). Serotonin (5-hydroxytriptamine). In: The biochemical bases of neuropharmacology. Oxford University Press, pp. 223–248.Google Scholar
  25. Cooper, R. L., Fernandez de Miguel, F., Adams, W. B., and Nicholls, J. G. (1992). Anterograde and retrograde effects of synapse formation on calcium currents and neurite outgrowth in cultured leech neurons. Proc. Roy. Soc. Lond. B 249:217–222.Google Scholar
  26. Davalli, A. V., Biancardi, E., Pollo, A., Socci, C., Pontiroli, A. E., Pozza, G., Clementi, F., Sher, E., and Carbone, E. (1996). Dihidropyridine-sensitive and insensitive voltage-operated Ca2+ channels participate in the control of glucose-induced insulin release from human pancreatic beta cells. J. Endocrinol. 150:195–203.PubMedGoogle Scholar
  27. De-Miguel, F. F., Vargas-Caballero, M., and García-Pérez, E. (2001). Spread of synaptic potentials through electrical synapses in Retzius neurones of the leech. J. Exp. Biol. 204:3241–3250.PubMedGoogle Scholar
  28. Descarries, L., Watkins, K. C., Garcia, S., and Beaudet, A. (1982). The serotonin neurons in nucleus raphe dorsalis of adult rat: A light and electron microscope radioautographic study. J. Comp. Neurol. 207:239–254.PubMedGoogle Scholar
  29. Dey, R. D., and Hoffpauir, J. M. (1986). Ultrastructural colocalization of the bioactive mediators 5-hydroxytryptamine and bombesin in endocrine cells of human fetal airways. Cell Tissue Res. 246:119–124.PubMedGoogle Scholar
  30. Dietzel, I. D., Dreapeau, P., and Nicholls, J. G. (1986). Voltage dependence of 5-hydroxytryptamine release at a synapse between identified leech neurones in culture. J. Physiol. (Lond.) 372:191–205.Google Scholar
  31. Dixon, D., and Atwood, H. (1989). Cojoint action of phosphatidylinositol and adenylate cyclase systems in serotonin-induced facilitation at the crayfish neuromuscular junction. J. Neurophysiol. 62:1251–2159.PubMedGoogle Scholar
  32. Drapeau, P., Melinyshyn, E., and Sanchez-Armass, S. (1989). Contact-mediated loss of the nonsynaptic response to transmitter during reinnervation of an identified leech neuron in culture. J. Neurosci. 9:2502–2508.PubMedGoogle Scholar
  33. Drapeau, P., and Sanchez-Armass, S. (1988). Selection of postsynaptic serotonin receptors during reinnervation of an identified leech neuron in culture. J. Neurosci. 8:4718–4727.PubMedGoogle Scholar
  34. Dun, N. J., and Minota, S. (1982). Post-tetanic depolarization in sympathetic neurones of the Guinea-pig. J. Physiol. (Lond.) 323:325–337.Google Scholar
  35. Edwards, D. H., Yeh, S. R., Musolf, B. E., Antonsen, B. L., and Krasne, F. B. (2002). Metamodulation of the crayfish escape circuit. Brain Behav. Evol. 360–369.Google Scholar
  36. Fernández-De-Miguel, F., Cooper, R. L., and Adams, W. B. (1992). Synaptogenesis and calcium current distribution in cultured leech neurons. Proc. Roy. Soc. Lond. B 247:215–221.Google Scholar
  37. Fernández de Miguel, F., and Drapeau, P. (1995). Synapse formation and function: Insights from identified leech neurons in culture. J. Neurobiol. 27:367–379.PubMedGoogle Scholar
  38. Ferris, C. F. (2000). Adolescent stress and neural plasticity in hamsters: A vasopressin-serotonin model of inappropriate aggressive behaviour. Exp. Physiol. Spec No: 85S–90S.Google Scholar
  39. Fuchs, P. A., Henderson, L., and Nicholls, J. G. (1982). Chemical transmission between individual Retzius and sensory neurones of the leech in culture. J. Physiol. (Lond) 323:195–210.Google Scholar
  40. Fuxe, K. (1965). Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta. Physiol. Scand. 64:37+.Google Scholar
  41. Garcia-Perez, E., Vargas-Caballero, M., Velazquez-Ulloa, N., Minzoni, A., and De-Miguel, F. F. (2004). Synaptic integration in electrically coupled neurons. Biophys. J. 86:646–655.PubMedGoogle Scholar
  42. Garris, P. A., Ciolkowski, E. L., Pastore, P., and Wightman, R. M. (1994). Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J. Neurosci. 14:6084–6093.PubMedGoogle Scholar
  43. Gilis, M. A., and Anctil, M. (2001). Monoamine release by neurons of a primitive nervous system: An amperometric study. J. Neurochem. 76:1774–1784.PubMedGoogle Scholar
  44. Graeff, F. G., Guimaraes, F. S., De Andrade, T. G., and Deakin, J. F. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 54:129–141.PubMedGoogle Scholar
  45. Groome, J. R., Clark, M., and Lent, C. M. (1993). The behavioural state of satiation in the leech is regulated by body destension and mimicked by serotonin depletion. J. Exp. Biol. 182:265–270.PubMedGoogle Scholar
  46. Gross, C., Santarelli, L., Brunner, D., Zhuang, X., and Hen, R. (2000). Altered fear circuits in 5-HT(1A) receptor KO mice. Biol. Psychiatry 48:1157–1163.PubMedGoogle Scholar
  47. Guo, X., Przywara, D. A., Wakade, T. D., and Wakade, A. R. (1996). Exocytosis coupled to mobilization of intracellular calcium by muscarine and caffeine in rat chromaffin cells. J. Neurochem. 67:155–162.PubMedGoogle Scholar
  48. Henderson, L. (1983). The role of 5-hydroxytryptamine as a transmitter between identified leech neurones in culture. J. Physiol. (Lond) 339:311–326.Google Scholar
  49. Henderson, L. P., Kuffler, D. P., Nicholls, J. G., and Zhang, R. (1983). Structural and functional analysis of synaptic transmission between identified leech neurones in culture. J. Physiol. (Lond.) 340:347–358.Google Scholar
  50. Hery, F., and Ternaux, J. P. (1981). Regulation of release processes in central serotoninergic neurons. J. Physiol. (Paris) 77:287–301.Google Scholar
  51. Higley, J. D., and Linnoila, M. (1997). Low central nervous system serotonergic activity is traitlike and correlates with impulsive behavior. A nonhuman primate model investigating genetic and environmental influences on neurotransmission. Ann N.Y. Acad. Sci. 836:39–56.PubMedGoogle Scholar
  52. Hornung, J. P. (2003). The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 26:331–343.PubMedGoogle Scholar
  53. Huang, L.-Y. M., and Neher, E. (1996). Ca2+-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron 17:135–145.PubMedGoogle Scholar
  54. Hull, E. M., Lorrain, D. S., Du, J., Matuszewich, L., Lumley, L. A., Putnam, S. K., and Moses, J. (1999). Hormone-neurotransmitter interactions in the control of sexual behavior. Behav. Brain Res. 105:105–116.PubMedGoogle Scholar
  55. Iravani, M. M., and Kruk, Z. L. (1997). Real-time measurement of stimulated 5-hydroxytryptamine release in rat substantia nigra pars reticulata brain slices. Synapse 25:93–102.PubMedGoogle Scholar
  56. Jacobs, B. L., and Fornal, C. A. (1993). 5-HT and motor control: A hypothesis. Trends. Neurosci. 16:346–352.PubMedGoogle Scholar
  57. Jaffe, E. H., Marty, A., Schulte, A., and Chow, R. H. (1998). Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices. J. Neurosci. 18:3548–3553.PubMedGoogle Scholar
  58. Jenike, M. A., Rauch, S. L., Cummings, J. L., Savage, C. R., and Goodman, W. K. (1996). Recent developments in neurobiology of obsessive-compulsive disorder. J. Clin. Psychiatry 57:492–503.PubMedGoogle Scholar
  59. Jobe, P. C., Dailey, J. W., and Wernicke, J. F. (1999). A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders. Crit. Rev. Neurobiol. 13:317–356.PubMedGoogle Scholar
  60. Kang, G., and Holz, G. G. (2003). Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic beta cells. J. Physiol. (Lond) 546:175–189.Google Scholar
  61. Kleinhaus, A. L., and Angstadt, J. D. (1995). Diversity and modulation of ionic conductances in leech neurons. J. Neurobiol. 27:419–433.PubMedGoogle Scholar
  62. Kravitz, E. A. (1988). Hormonal control of behavior: Amines and the biasing of behavioral output in lobsters. Science 241:1775–1781.PubMedGoogle Scholar
  63. Kravitz, E. A. (2000). Serotonin and aggression: Insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J. Comp. Physiol. [A] 186:221–238.Google Scholar
  64. Kristan, W. B., Jr. (1982). Sensory motor neurons responsible for the local bending response in leeches. J. Exp. Biol. 96:161–180.Google Scholar
  65. Kristan, W. B., and Nusbaum, M. P., Jr. (1983). The dual role of serotonin in leech swimming. J. Physiol. (Paris) 78:743–747.Google Scholar
  66. Kuffler, D. P., Nicholls, J. G., and Drapeau, P. (1987). Transmitter localization and vesicle turnover at a serotoninergic synapse between identified leech neurons in culture. J. Comp. Neurol. 256:516–526.PubMedGoogle Scholar
  67. Lemmens, R., Larsson, O., Berggren, P. O., and Islam, M. S. (2001). Ca2+-induced Ca2+ release from the endoplasmic reticulum amplifies the Ca2+ signal mediated by activation of voltage-gated L-type Ca2+ channels in pancreatic beta-cells. J. Biol. Chem. 276:9971–9977.PubMedGoogle Scholar
  68. Lent, C. M. (1973). Retzius Cells: Neuroeffectors controlling mucus release by the leech. Science 179:693–696.PubMedGoogle Scholar
  69. Lent, C. M. (1985). Serotonergic modulation of the feeding behavior of the medicinal leech. Brain. Res. Bull. 14:643–655.PubMedGoogle Scholar
  70. Lent, C. M., and Dickinson, M. H. (1984). Serotonin integrates the feeding behavior of the medicinal leech. J. Comp. Physiol. A 154:457–471.Google Scholar
  71. Lent, C. M., and Frazer, B. M. (1977). Connectivity of the monoamine-containing neurones in central nervous system of leech. Nature 266:844–847.PubMedGoogle Scholar
  72. Lesch, K. P., and Merschdorf, U. (2000). Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behav. Sci. Law. 18:581–604.PubMedGoogle Scholar
  73. Lessman, V., and Dietzel, I. D. (1995). Two kinetically distinct 5-Hidroxytryptamine-activated Cl- conductances at Retzius P-cell synapses of the medicinal leech. J. Neurosci. 15:1496–1505.PubMedGoogle Scholar
  74. Lessmann, V., and Dietzel, I. D. (1991). Development of serotonin-induced ion currents in identified embryonic Retzius cells from the medicinal leech (Hirudo medicinalis). J. Neurosci. 11:800–809.PubMedGoogle Scholar
  75. Liem, R. S., and Copray, J. C. (1996). Immunogold localization of serotonin within synaptic terminals in the rat mesencephalic trigeminal nucleus. Acta. Anat. (Basel) 155:50–56.Google Scholar
  76. Liposits, Z., Gorcs, T., and Trombitas, K. (1985). Ultrastructural analysis of central serotoninergic neurons immunolabeled by silver-gold-intensified diaminobenzidine chromogen. Completion of immunocytochemistry with X-ray microanalysis. J. Histochem. Cytochem. 33:604–610.PubMedGoogle Scholar
  77. Lockery, S. R., and Kristan, W. B., Jr. (1990). Distributed processing of sensory information in the leech II. Identification of interneurons contributing to the local bending reflex. J. Neurosci. 10:1816–1829.PubMedGoogle Scholar
  78. Lockery, S. R., and Kristan, W. B., Jr. (1991). Two forms of sensitization of the local bending reflex of the medicinal leech. J. Comp. Physiol. [A] 168:165–177.Google Scholar
  79. Loizou, L. A. (1972). The postnatal ontogeny of monoamine-containing neurones in the central nervous system of the albino rat. Brain. Res. 40:395–418.PubMedGoogle Scholar
  80. Lundberg, F. M., and Hökfelt, T. (1983). Coexistence of peptides and classical neurotransmitters. Trends Neurosci. 6:325–333.Google Scholar
  81. Mansvelder, H. D. Y. K. K. S. (2000). Regulation of exocytosis in neuroendocrine cells: Spatial organization of channels and vesicles, stimulus-secretion coupling, Ca2+ buffers and modulation. Prog. Neurobiol. 62:427–441.PubMedGoogle Scholar
  82. Mar, A., and Drapeau, P. (1996). Modulation of conduction block in leech mechanosensory neurons. J. Neurosci. 16:4335–4343.PubMedGoogle Scholar
  83. Marder, E., and Eisen, J. S. (1984). Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters. J. Neurophysiol. 51:1362–1374.PubMedGoogle Scholar
  84. Marlier, L., Sandillon, F., Poulat, P., Rajaofetra, N., Geffard, M., and Privat, A. (1991). Serotonergic innervation of the dorsal horn of rat spinal cord: Light and electron microscopis immunocytochemical study. J. Neurocytol. 20:320–322.Google Scholar
  85. Martin, G. R., and Humphrey, P. P. (1994). Receptors for 5-hydroxytryptamine: Current perspectives on classification and nomenclature. Neuropharmacology 33:261–273.CrossRefPubMedGoogle Scholar
  86. Mosko, S. S., Haubrich, D., and Jacobs, B. L. (1977). Serotonergic afferents to the dorsal raphe nucleus: Evdience from HRP and synaptosomal uptake studies. Brain Res. 119:269–290.PubMedGoogle Scholar
  87. Moukhles, H., Bosler, O., Bolam, J. P., Vallee, A., Umbriaco, D., Geffard, M., and Doucet, G. (1997). Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience 76:1159–1171.PubMedGoogle Scholar
  88. Neijt, H. C., Plomp, J. J., and Vijverberg, H. P. (1989). Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells. J. Physiol. (Lond.) 411:257–269.Google Scholar
  89. Nguyen, D., and Sargent, P. B. (2002). Synaptic vesicle recycling at two classes of release sites in giant nerve terminals of the embryonic chicken ciliary ganglion. J. Comp. Neurol. 24:128–137.Google Scholar
  90. Nicholls, J. G., and Kuffler, D. P. (1990). Quantal release of serotonin from presynaptic nerve terminals. Neurochem. Int. 17:157–163.Google Scholar
  91. Nusbaum, M. P. (1986). Synaptic basis of swim initiation in the leech. III. Synaptic effects of serotonin-containing interneurones (cells 21 and 61) on swim CPG neurones (cells 18 and 208). J. Exp. Biol. 122:303–321.PubMedGoogle Scholar
  92. Nusbaum, M. P., Friesen, W. O., Kristan, W. B., Jr., and Pierce, R. A. (1987). Neural mechanisms generating the leech swimming rhythm. J. Comp. Physiol. A 161A:355–366.Google Scholar
  93. Nusbaum, M. P., and Kristan, W. B. J. (1986). Swim initiation in the leech by serotonin-containing interneurons cells 21 and 61. J. Exp. Biol. 122:277–302.PubMedGoogle Scholar
  94. Peters, J. A., Malone, H. M., and Lambert, J. J. (1993). An electrophysiological investigation of the properties of 5-HT3 receptors of rabbit nodose ganglion neurones in culture. Br. J. Pharmacol. 110:665–676.PubMedGoogle Scholar
  95. Portas, C. M., Bjorvatn, B., and Ursin, R. (2000). Serotonin and the sleep/wake cycle: Special emphasis on microdialysis studies. Prog. Neurobiol. 60:13–35.PubMedGoogle Scholar
  96. Puopolo, M., Hochstetler, S. E., Gustincich, S., Wightman, R. M., and Raviola, E. (2001). Extrasynaptic release of dopamine in a retinal neuron: Activity dependence and transmitter modulation. Neuron 30:211–225.PubMedGoogle Scholar
  97. Raleigh, M. J., McGuire, M. T., Brammer, G. L., Pollack, D. B., and Yuwiler, A. (1991). Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. Brain. Res. 559:181–190.PubMedGoogle Scholar
  98. Ressler, K. J., and Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress. Anxiet. 12:2–19.Google Scholar
  99. Reuter, H. (1996). Diversity and function of presynaptic calcium channels in the brain. Curr. Opin. Neurobiol. 6:331–337.PubMedGoogle Scholar
  100. Richards, K. S., Simon, D. J., Pulver, S. R., Beltz, B. S., and Marder, E. (2003). Serotonin in the developing stomatogastric system of the lobster, Homarus americanus. J. Neurobiol. 54:380–392.PubMedGoogle Scholar
  101. Ridet, J. L., Rajaofetra, N., Teilhac, J. R., Geffard, M., and Privat, A. (1993). Evidence for nonsynaptic serotonergic and noradrenergic innervation of the rat dorsal horn and possible involvement of neuron-glia interactions. Neuroscience 52:143–157.PubMedGoogle Scholar
  102. Ridet, J. L., Tamir, H., and Privat, A. (1994). Direct immunocytochemical locallization of 5-hydroxytryptamine receptors in the adult rat spinal cord: A light and electron microscopic study using an anti-idiotypic antiserum. J. Neurosci. Res. 38:109–121.PubMedGoogle Scholar
  103. Rio, J. P., Reperant, J., Miceli, D., Medina, M., and Kenigfest-Rio, N. (2002). Serotonergic innervation of the isthmo-optic nucleus of the pigeon centrifugal visual system. An immunocytochemical electron microscopic study. Brain. Res. 924:127–131.PubMedGoogle Scholar
  104. Rogawski, M. A., and Aghajanian, G. K. (1981). Serotonin autoreceptors on dorsal raphe neurons: Structure-activity relationships of tryptamine analogs. J. Neurosci. 1:1148–1154.PubMedGoogle Scholar
  105. Sahley, C. L. (1994). Serotonin depletion impairs but does not eliminate classical conditioning in the leech Hirudo medicinalis. Behav. Neurosci. 108:1043–1052.PubMedGoogle Scholar
  106. Sahley, C. L. (1995). What we have learned from the study of learning in the leech. J. Neurobiol. 27:434–445.PubMedGoogle Scholar
  107. Sakurai, A., and Katz, P. S. (2003). Spike timing-dependent serotonergic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. J. Neurosci. 23:10745–10755.PubMedGoogle Scholar
  108. Saller, C. F., and Stricker, E. M. (1976). Hyperphagia and increased growth in rats after intraventricular injection of 5,7-dihydroxytryptamine. Science 192:385–387.PubMedGoogle Scholar
  109. Sanchez-Armass, S., Merz, D. C., and Drapeau, P. (1991). Distinct receptors, second messengers and conductances underlying the dual responses to serotonin in an identified leech neurone. J. Exp. Biol. 155:531–547.PubMedGoogle Scholar
  110. Satterlie, R. A., and Norekian, T. P. (1996). Modulation of swimming speed in the pteropod mollusc, Clione limacina: role of a compartmental serotonergic system. Invert. Neurosci. 2:157–165.PubMedGoogle Scholar
  111. Satterlie, R. A., Norekian, T. P., and Pirtle, T. J. (2000). Serotonin-induced spike narrowing in a locomotor pattern generator permits increases in cycle frequency during accelerations. J. Neurophysiol. 83:2163–2170.PubMedGoogle Scholar
  112. Sawada, M., and Coggeshall, R. E. (1976b). A central inhibitory action of 5-hydroxytryptamine in the leech. J. Neurobiol. 7:477–482.Google Scholar
  113. Schwartz, J. H., and Shkolnik, L. J. (1981). The giant serotonergic neuron of Aplysia: A multi-targeted nerve cell. J. Neurosci. 1:606–619.PubMedGoogle Scholar
  114. Smiley, J. F., and Goldman-Rakic, P. S. (1996). Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy. J. Comp. Neurol. 367:431–443.PubMedGoogle Scholar
  115. Soldo, B. L., Giovannucci, D. R., Stuenkel, E. L., and Moises, H. C. (2004). Ca(2+) and frequency dependence of exocytosis in isolated somata of magnocellular supraoptic neurones of the rat hypothalamus. J. Physiol. (Lond.) 555:699–711.Google Scholar
  116. Starkey, S. J., and Skingle, M. (1994). 5-HT1D as well as 5-HT1A autoreceptors modulate 5-HT release in the guinea-pig dorsal raphe nucleus. Neuropharmacology 33:393–402.PubMedGoogle Scholar
  117. Stauderman, K. A., and Jones, D. J. (1986). Presynaptic serotonin receptors regulate [3H]serotonin release from rat spinal cord synaptosomes. Eur. J. Pharmacol. 120:107–109.PubMedGoogle Scholar
  118. Stewart, R. R., Adams, W. B., and Nicholls, J. G. (1989). Presynaptic calcium currents and facilitation of serotonin release at synapses between cultured leech neurones. J. Exp. Biol. 144:1–12.PubMedGoogle Scholar
  119. Sugita, S., Shen, K. Z., and North, R. A. (1992). 5-hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala. Neuron 8:199–203.PubMedGoogle Scholar
  120. Szczupak, L., and Kristan, W. B., Jr. (1995). Widespread mechanosensory activation of the serotonergic system of the medicinal leech. J. Neurophysiol. 74:2614–2624.PubMedGoogle Scholar
  121. Trueta, C., Mendez, B., and De-Miguel, F. F. (2003). Somatic exocytosis of serotonin mediated by L-type calcium channels in cultured leech neurones. J. Physiol. (Lond.) 547:405–416.Google Scholar
  122. Trueta, C., Morales, M. A., Sanchez-Armass, S., and De-Miguel, F. F. (2004). Calcium-induced calcium release contributes to somatic secretion of serotonin in leech retzius neurons. J. Neurobiol. 61:309–316.PubMedGoogle Scholar
  123. Trulson, M. E., and Frederickson, C. J. (1987). A comparison of the electrophysiological and pharmacological properties of serotonin-containing neurons in the nucleus raphe dorsalis, raphe medianus and raphe pallidus recorded from mouse brain slices in vitro: Role of autoreceptors. Brain Res. Bull. 18:179–190.PubMedGoogle Scholar
  124. Ursin, R. (2002). Serotonin and sleep. Sleep Med. Rev. 6:55–69.PubMedGoogle Scholar
  125. Van Bockstaele, E. J., Cestari, D. M., and Pickel, V. M. (1994). Synaptic structure and connectivity of serotonin terminals in the ventral tegmental area: Potential sites for modulation of mesolimbic dopamine neurons. Brain. Res. 647:307–322.PubMedGoogle Scholar
  126. Velazquez-Ulloa, N., Blackshaw, S. E., Szczupak, L., Trueta, C., Garcia, E., and De-Miguel, F. F. (2003). Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech. J. Neurobiol. 54:604–617.PubMedGoogle Scholar
  127. Walz, W., and Schlue, W. R. (1982). Ionic mechanism of a hyperpolarizing 5-hydroxytryptamine effect on leech neuropile glial cells. Brain. Res. 250:111–121.PubMedGoogle Scholar
  128. Weiger, W. A. (1997). Serotonergic modulation of behaviour: A phylogenetic overview. Biol. Rev. Camb. Philos. Soc. 72:61–95.PubMedGoogle Scholar
  129. Willard, A. L. (1981). Effects of serotonin on the generation of the motor program for swimming by the medicinal leech. J. Neurosci. 1:936–944.PubMedGoogle Scholar
  130. Wilson, R. J., Kristan, W. B., Jr., and Kleinhaus, A. L. (1996). An increase in activity of serotonergic Retzius neurones may not be necessary for the consummatory phase of feeding in the leech Hirudo medicinalis. J. Exp. Biol. 199:1405–1414.PubMedGoogle Scholar
  131. Yang, J., Mathie, A., and Hille, B. (1992). 5-HT3 receptor channels in dissociated rat superior cervical ganglion neurons. J. Physiol. (Lond.) 448:237–256.Google Scholar
  132. Zaidi, Z. F., and Matthews, M. R. (1997). Exocytotic release from neuronal cell bodies, dendrites and nerve terminals in sympathetic ganglia of the rat, and its differential regulation. Neuroscience 80:861–891.PubMedGoogle Scholar
  133. Zaidi, Z. F., and Matthews, M. R. (1999). Stimulant-induced exocytosis from neuronal somata, dendrites, and newly formed synaptic nerve terminals in chronically decentralized sympathetic ganglia of the rat. J. Comp. Neurol. 415:121–143.PubMedGoogle Scholar
  134. Zangrossi, H., Jr., Viana, M. B., Zanoveli, J., Bueno, C., Nogueira, R. L., and Graeff, F. G. (2001). Serotonergic regulation of inhibitory avoidance and one-way escape in the rat elevated T-maze. Neurosci. Biobehav. Rev. 25:637–645.PubMedGoogle Scholar
  135. Zimmermann, H. (1993). Synaptic transmission. Cellular and molecular bases. Georg Thieme Verlag. Stuttgart-New York; Oxford University Press, New York.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Departamento de Biofísica, Instituto de Fisiología CelularUniversidad NacionalAut ónoma deMéxicoMéxicoMéxico
  2. 2.Departamento de NeurofisiologíaInstituto Nacional de PsiquiatríaMéxico
  3. 3.Instituto de Fisiología Celular, UNAM.México

Personalised recommendations