Tunable micro-structure of dissolving pulp-based cellulose nanofibrils with facile prehydrolysis process

Abstract

In this study, eucalyptus raw materials were pre-hydrolyzed and cellulose nanofibrils (CNFs) were prepared. The effect of prehydrolysis conditions on the micro-structure of dissolving pulp-based CNFs was studied, and the hydrogen bond change and crystal structure in CNFs were analyzed by FTIR peak fitting and X-ray diffractometer. The results showed that prehydrolysis would not change the crystal structure of CNFs, but could break up the intermolecular and intramolecular hydrogen bonds of CNFs. An increase in the prehydrolysis temperature would promote the breaking of the intramolecular hydrogen bonds in the amorphous region of CNFs, which leads to an increase in the crystallinity of CNFs. Long-time prehydrolysis treatments not only broke up the intermolecular hydrogen bonds in the amorphous region of CNFs, but also intramolecular hydrogen bonding in the crystalline region. Analyses of SEM and gas adsorption revealed that some nanopores became more and more large, and some small nanopores appeared on the surface of the CNFs with the increase of prehydrolysis intensity. The appearance of large or small nanopores on the surface of the CNFs were likely due to the breakage of hydrogen bonds in CNFs. The intermolecular and intramolecular hydrogen bonds of cellulose could be destroyed by changing prehydrolysis conditions, which resulted in appearance of a lot of nanopores on the surface of the CNFs. The DSC and TGA analyses revealed that the prehydrolysis has a little impact on the thermal stability of CNFs. This work can provide a tunable pathway of micro-structure of CNFs by controlling prehydrolysis process.

Graphic abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K (2020a) Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J Polym Environ. https://doi.org/10.1007/s10924-020-01858-w

    Article  Google Scholar 

  2. Beroual M, Trache D, Mehelli O, Boumaza L, Tarchoun AF, Derradji M, Khimeche K (2020b) Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds. Waste Biomass Valorization. https://doi.org/10.1007/s12649-020-01198-9

    Article  Google Scholar 

  3. Correia VD, dos Santos V, Sain M, Santos SF, Leao AL, Savastano H (2016) Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose 23:2971–2987. https://doi.org/10.1007/s10570-016-0996-9

    CAS  Article  Google Scholar 

  4. Desmaisons J, Boutonnet E, Rueff M, Dufresne A, Bras J (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329. https://doi.org/10.1016/j.carbpol.2017.06.032

    CAS  Article  PubMed  Google Scholar 

  5. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020

    CAS  Article  PubMed  Google Scholar 

  6. Du H et al (2020) Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. J Hazard Mater 400:123106. https://doi.org/10.1016/j.jhazmat.2020.123106

    CAS  Article  PubMed  Google Scholar 

  7. Farooq A, Patoary MK, Zhang M, Mussana H et al (2020) Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int J Biolog Macromol 154:1050–1073

    CAS  Article  Google Scholar 

  8. Guigou M, Cabrera MN, Vique M, Bariani M, Guarino J, Ferrari MD, Lareo C (2019) Combined pretreatments of eucalyptus sawdust for ethanol production within a biorefinery approach. Biomass Convers Biorefinery 9:293–304. https://doi.org/10.1007/s13399-018-0353-3

    CAS  Article  Google Scholar 

  9. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w

    CAS  Article  PubMed  Google Scholar 

  10. Hamed O et al (2019) Synthesis of a cross-linked cellulose-based amine polymer and its application in wastewater purification. Environ Sci Pollut Res 26:28080–28091. https://doi.org/10.1007/s11356-019-06001-4

    CAS  Article  Google Scholar 

  11. Hong S, Yuan Y, Li P, Zhang K, Lian H, Liimatainen H (2020) Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112677

    Article  Google Scholar 

  12. Ioelovich M (2008) Cellulose as a nanostructured polymer: a short review. BioResources 3:1403–1418

    Google Scholar 

  13. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/c5py00263j

    CAS  Article  Google Scholar 

  14. Jebali Z et al (2018) Cellulose nanofibrils (CNFs) from Ammophila arenaria, a natural and a fast growing grass plant. Int J Biolog Macromol 107:530–536

    CAS  Article  Google Scholar 

  15. Kassab Z, Mansouri S, Tamraoui Y, Sehaqui H, Hannache H, Qaiss AK, El Achaby M (2020) Identifying Juncus plant as viable source for the production of micro- and nano-cellulose fibers: application for PVA composite materials development. Ind Crop Prod 144:11. https://doi.org/10.1016/j.indcrop.2019.112035

    CAS  Article  Google Scholar 

  16. Kawee N, Lam NT, Sukyai P (2018) Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization. Carbohydr Polym 179:394–401. https://doi.org/10.1016/j.carbpol.2017.09.101

    CAS  Article  PubMed  Google Scholar 

  17. Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: Influence on crystallite size. Polym Degrad Stabil 95:778–781. https://doi.org/10.1016/j.polymdegradstab.2010.02.009

    CAS  Article  Google Scholar 

  18. Kishimoto CTM, Moerschbacher L, Prestes RA, Hoepfner JC, Pinheiro LA (2020) Preparation of nanocellulose by hydrolysis catalysedusing salts with different Fe valency. J Nanopart Res 22:12. https://doi.org/10.1007/s11051-020-04928-1

    CAS  Article  Google Scholar 

  19. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem-Int Edit 50:5438–5466. https://doi.org/10.1002/anie.201001273

    CAS  Article  Google Scholar 

  20. Lim WL, Gunny AAN, Kasim FH, AiNashef IM, Arbain D (2019) Alkaline deep eutectic solvent: a novel green solvent for lignocellulose pulping. Cellulose 26:4085–4098. https://doi.org/10.1007/s10570-019-02346-8

    CAS  Article  Google Scholar 

  21. Liu W et al (2020) Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain Chem Eng 8:7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125

    CAS  Article  Google Scholar 

  22. Miao C et al (2020) Superior crack initiation and growth characteristics of cellulose nanopapers. Cellulose 27:3181–3195. https://doi.org/10.1007/s10570-020-03015-x

    CAS  Article  Google Scholar 

  23. Muthoka RM, Kim HC, Kim JW, Zhai L, Panicker PS, Kim J (2020) Steered pull simulation to determine nanomechanical properties of cellulose nanofiber. Materials 13:14. https://doi.org/10.3390/ma13030710

    CAS  Article  Google Scholar 

  24. Neiva D, Fernandes L, Araujo S, Lourenco A, Gominho J, Simoes R, Pereira H (2015) Chemical composition and kraft pulping potential of 12 eucalypt species. Ind Crop Prod 66:89–95. https://doi.org/10.1016/j.indcrop.2014.12.016

    CAS  Article  Google Scholar 

  25. Nie SX, Zhang K, Lin XJ, Zhang CY, Yan DP, Liang HM, Wang SF (2018) Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydr Polym 181:1136–1142. https://doi.org/10.1016/j.carbpol.2017.11.020

    CAS  Article  PubMed  Google Scholar 

  26. Ovalle-Serrano SA, Díaz-Serrano LA, Hong C, Hinestroza JP, Blanco-Tirado C, Combariza MY (2020) Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles. Cellulose 27:9947–9961. https://doi.org/10.1007/s10570-020-03527-6

    CAS  Article  Google Scholar 

  27. Poletto M, Ornaghi HL, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119. https://doi.org/10.3390/ma7096105

    Article  PubMed  PubMed Central  Google Scholar 

  28. Romani A, Larramendi A, Yanez R, Cancela A, Sanchez A, Teixeira JA, Domingues L (2019) Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Ind Crop Prod 132:327–335. https://doi.org/10.1016/j.indcrop.2019.02.040

    CAS  Article  Google Scholar 

  29. Sazali N, Salleh WNW, Ismail AF, Wong KC, Iwamoto Y (2019) Exploiting pyrolysis protocols on BTDA-TDI/MDI (P84) polyimide/nanocrystalline cellulose carbon membrane for gas separations. J Appl Polym Sci 136:9. https://doi.org/10.1002/app.46901

    CAS  Article  Google Scholar 

  30. Schneider WDH et al (2020) Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield. Appl Energy 262:12. https://doi.org/10.1016/j.apenergy.2020.114493

    CAS  Article  Google Scholar 

  31. Segal LC, Creely J Jr, Martin AEJ, Conrad CMJTRJ (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    CAS  Article  Google Scholar 

  32. Sirvio JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem 17:3401–3406. https://doi.org/10.1039/c5gc00398a

    CAS  Article  Google Scholar 

  33. Stankov S et al (2020) Chemical composition and antimicrobial activity of essential oil from aerial part (leaves and fruit) of Eucalyptus gomphocephala DC. J Essent Oil Bear Plants 23:204–212. https://doi.org/10.1080/0972060x.2020.1727365

    CAS  Article  Google Scholar 

  34. Sukhavattanakul P, Manuspiya H (2020) Fabrication of hybrid thin film based on bacterial cellulose nanocrystals and metal nanoparticles with hydrogen sulfide gas sensor ability. Carbohydr Polym 230:12. https://doi.org/10.1016/j.carbpol.2019.115566

    CAS  Article  Google Scholar 

  35. Tarchoun AF, Trache D, Klapötke TM, Chelouche S, Derradji M, Bessa W, Mezroua A (2019a) A promising energetic polymer from Posidonia oceanica brown algae: synthesis, characterization, and kinetic modeling. Macromol Chem Phys 220:1900358. https://doi.org/10.1002/macp.201900358

    CAS  Article  Google Scholar 

  36. Tarchoun AF, Trache D, Klapötke TM, Derradji M, Bessa W (2019b) Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26:7635–7651. https://doi.org/10.1007/s10570-019-02672-x

    CAS  Article  Google Scholar 

  37. Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH (2020a) Nanocellulose: from fundamentals to advanced applications. Front Chem 8:392. https://doi.org/10.3389/fchem.2020.00392

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Trache D, Thakur VK, Boukherroub R (2020b) Cellulose nanocrystals/graphene hybrids-a promising new class of materials for advanced applications. Nanomaterials (Basel). https://doi.org/10.3390/nano10081523

    Article  Google Scholar 

  39. Wan JQ, Lian J, Wang Y, Ma YW (2015) Investigation of cellulose supramolecular structure changes during conversion of waste paper in near-critical water on producing 5-hydroxymethyl furfural. Renew Energy 80:132–139. https://doi.org/10.1016/j.renene.2015.01.071

    CAS  Article  Google Scholar 

  40. Wang D (2018) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26:687–701. https://doi.org/10.1007/s10570-018-2143-2

    CAS  Article  Google Scholar 

  41. Wang HQ, Li JC, Zeng XH, Tang X, Sun Y, Lei TZ, Lin L (2020) Extraction of cellulose nanocrystals using a recyclable deep eutectic solvent. Cellulose 27:1301–1314. https://doi.org/10.1007/s10570-019-02867-2

    CAS  Article  Google Scholar 

  42. Wang S, Gao W, Chen K, Xiang Z, Zeng J, Wang B, Xu J (2018) Deconstruction of cellulosic fibers to fibrils based on enzymatic pretreatment. Bioresour Technol 267:426–430. https://doi.org/10.1016/j.biortech.2018.07.067

    CAS  Article  PubMed  Google Scholar 

  43. Yu W et al (2020) Comparison of deep eutectic solvents on pretreatment of raw ramie fibers for cellulose nanofibril production. ACS Omega 5:5580–5588. https://doi.org/10.1021/acsomega.0c00506

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Yu W, Wang CY, Yi YJ, Zhou WL, Wang HY, Yang YR, Tan ZJ (2019) Choline chloride-based deep eutectic solvent systems as a pretreatment for nanofibrillation of ramie fibers. Cellulose 26:3069–3082. https://doi.org/10.1007/s10570-019-02290-7

    CAS  Article  Google Scholar 

  45. Zhao DQ et al (2019) Exploring structural variations of hydrogen-bonding patterns in cellulose during mechanical pulp refining of tobacco stems. Carbohydr Polym 204:247–254. https://doi.org/10.1016/j.carbpol.2018.10.024

    CAS  Article  PubMed  Google Scholar 

  46. Zhu HL et al (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Key R&D Program of China (2017YFB0307900).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chaojun Wu or Dongmei Yu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1024 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wu, C., Yu, D. et al. Tunable micro-structure of dissolving pulp-based cellulose nanofibrils with facile prehydrolysis process. Cellulose (2021). https://doi.org/10.1007/s10570-021-03760-7

Download citation

Keywords

  • Eucalyptus
  • Prehydrolysis
  • Dissolving pulp
  • CNFs
  • Hydrogen bond
  • Micro-structure