Pyrolysis characteristics of cellulosic biomass in the presence of alkali and alkaline-earth-metal (AAEM) oxalates

Abstract

The pyrolysis characteristics including reaction kinetics and products distribution of cellulose pyrolysis in the presence of AAEM oxalates were preliminarily studied by using the TG and PY-GC/MS analysis. In general, the main mass loss region took place at 300–400 °C and the maximum mass loss temperature was about 380 °C. The activation energy Ea of cellulose pyrolysis (159 kJ/mol) was decreased in the presence of AAEM oxalates (K2C2O4—123 kJ/mol, MgC2O4—151 kJ/mol and CaC2O4—138 kJ/mol). The major pyrolytic components were classified into furans, anhydrosugars, acids, esters, alcohols, aldehydes, pyrans, ketones, hydrocarbons and phenols, etc. The presence of AAEM oxalates promoted the generation of ketones. In particular, K2C2O4 and MgC2O4 showed a high selectivity (relative content: > 30%) on the production of ketones. As a good candidate of MgO, MgC2O4 or MgCO3 has a high potential for both gas upgrading and porous carbon production in biomass pyrolysis.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N (2012) Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim 107:1023–1029

    CAS  Article  Google Scholar 

  2. Chen D, Zhou J, Zhang Q (2014) Effects of torrefection on the pyrolysis behavior and bio-oil properties of rice husk by using TG-FTIR and Py-GC/MS. Energy Fuels 28:5857–5863

    CAS  Article  Google Scholar 

  3. Chen L, Liao Y, Guo Z, Cao Y, Ma X (2019a) Products distribution and generation pathways of cellulose pyrolysis. J Cleaner Prod 232:1309–1320

    CAS  Article  Google Scholar 

  4. Chen W-H, Wang C-W, Ong HC, Show PL, Hsieh T-H (2019b) Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258:116168

    CAS  Article  Google Scholar 

  5. Chen X, Li S, Liu Z, Chen Y, Yang H, Wang X et al (2019c) Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Bioresour Technol 287:121493

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. CollardF-X BJ (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemi-celluloses and lignin. Renew Sustain Energy Rev 38:594–608

    Article  CAS  Google Scholar 

  7. Dai G, Wang K, Wang G, Wang S (2019) Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation. Combust Flame 208:273–280

    CAS  Article  Google Scholar 

  8. French AD (2017) Glucose, not cellobiose, is the repeating unit of celluloseand why that is important. Cellulose 24:4605–4609

    CAS  Article  Google Scholar 

  9. Hourlier D (2019) Thermal decomposition of calcium oxalate: beyond appearances. J Therm Anal Calorim 136:2221–2229

    CAS  Article  Google Scholar 

  10. Huo E, Duan D, Lei H, Liu C, Zhang Y, Wu J et al (2020) Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts. Energy 199:117459

    CAS  Article  Google Scholar 

  11. Jung S, Lee S, Park Y-K, Lee KH, Kwon EE (2020) CO2-Mediated catalytic pyrolysis of rice straw for syngas production and power generation. Energy Conver Manage 220:113057

    CAS  Article  Google Scholar 

  12. Kalogiannis KG, Stefanidis SD, Karakoulia SA, Triantafyllidis KS, Yiannoulakis H, Michailof C, Lappas AA (2018) First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: deoxygenation mechanisms and catalyst deactivation. Appl Catal B Environ 238:346–357

    CAS  Article  Google Scholar 

  13. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energ Rev 57:1126–1140

    CAS  Article  Google Scholar 

  14. Kim J, Lee J, Kim K-H, Ok YS, Jeon YJ, Kwon EE (2017) Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium. Appl Therm Eng 110:335–345

    CAS  Article  Google Scholar 

  15. Lazdovica K, Liepina L, Kampars V (2016) Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method. Bioresour Technol 207:126–133

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Lee J, Oh J-I, Ok YS, Kwon EE (2017) Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2. Energy 137:510–517

    CAS  Article  Google Scholar 

  17. Lin Y, Zhang C, Zhang M, Zhang J (2010) Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy Fuels 24:5686–5695

    CAS  Article  Google Scholar 

  18. Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623

    CAS  PubMed  Article  Google Scholar 

  19. Lu Q, Yang X, Dong C, Zhang Z, Zhang X, Zhu X (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis 92:430–438

    CAS  Article  Google Scholar 

  20. Lu Q, Wu Y, Hu B, Liu J, Liu D, Dong C, Yang Y (2019) Insight into the mechanism of secondary reactions in cellulose pyrolysis: interactions between levoglucosan and acetic acid. Cellulose 26:8279–8290

    CAS  Article  Google Scholar 

  21. Ludwinowicz J, Jaroniec M (2015) Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon 82:297–303

    CAS  Article  Google Scholar 

  22. Mahadevan R, Adhikari S, Shakya R, Wang K, Dayton D, Lehrich M et al (2016) Effect of alkali and alkaline earth metals on in-situ catalytic fast pyrolysis of lignocellulosic biomass: a microreactor study. Energy Fuels 30:3045–3056

    CAS  Article  Google Scholar 

  23. Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473

    CAS  Article  Google Scholar 

  24. Senneca O, Cerciello F, Russo C, Wütscher A, Muhler M, Apicella B (2020) Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide. Fuel 271:117656

    CAS  Article  Google Scholar 

  25. Sevilla M, Ferrero GA, Fuertes AB (2017) One-pot synthesis of biomass-based hierarchical porous carbons with a large porosity development. Chem Mater 29:6900–6907

    CAS  Article  Google Scholar 

  26. Sevilla M, Al-Jumialy ASM, Fuertes AB, Mokaya R (2018) Optimization of the pore structure of biomass-derived carbons in relation to their use for CO2 capture at low and high pressure regimes. ACS Appl Mater Interfaces 10:1623–1633

    CAS  PubMed  Article  Google Scholar 

  27. Shen Y (2015) Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J Mater Chem A 3:13114–13188

    CAS  Article  Google Scholar 

  28. Shen Y, Yu S, Yuan R, Wang P (2020a) Biomass pyrolysis with alkaline-earth-metal additive for co-production of bio-oil and biochar-based soil amendment. Sci Total Environ 743:140760

    CAS  PubMed  Article  Google Scholar 

  29. Shen Y, Zhang N, Zhang S (2020b) Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons. Energy 190:116431

    CAS  Article  Google Scholar 

  30. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150

    CAS  Article  Google Scholar 

  31. Trendewicz A, Evans R, Dutta A, Sykes R, Carpenter D, Braun R (2015) Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass Bioenergy 74:15–25

    CAS  Article  Google Scholar 

  32. Usino DO, Supriyanto YP, Pettersson A, Richards T (2020) Influence of temperature and time on initial pyrolysis of cellulose and xylan. J Anal Appl Pyrolysis 147:104782

    CAS  Article  Google Scholar 

  33. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energ Combust Sci 62:33–66

    Article  Google Scholar 

  34. Wang J, Yang Q, Yang W, Pei H, Zhang L, Zhang T et al (2018) Adsorptive catalysis of hierarchical porous heteroatom-doped biomass: from recovered heavy metal to efficient pollutant decontamination. J Mater Chem A 6:16690–16698

    CAS  Article  Google Scholar 

  35. Yang X, Fu Z, Han D, Zhao Y, Li R, Wu Y (2020) Unveiling the pyrolysis mechanisms of cellulose: experimental and theoretical studies. Renew Energy 147:1120–1130

    CAS  Article  Google Scholar 

  36. Yuan R, Shen Y (2019a) Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production. Bioresour Technol 293:122076

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Yuan R, Shen Y (2019b) Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues. Waste Manage 87:86–96

    CAS  Article  Google Scholar 

  38. Yuan Z, Xu Z, Zhang D, Chen W, Huang Y, Zhang T et al (2018) Mesoporous activated carbons synthesized by pyrolysis of waste polyester textiles mixed with Mg-containing compounds and their Cr(VI) adsorption. Colloids Surf A 549:86–93

    CAS  Article  Google Scholar 

  39. Zhang J, Ren N, Bai J (2006) Non-isothermal decomposition reaction kinetics of the magnesium oxalate dehydrate. Chin J Chem 24:360–364

    CAS  Article  Google Scholar 

  40. Zhang H, Xiao R, Jin B et al (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262

    CAS  PubMed  Article  Google Scholar 

  41. Zhang H, Luo M, Xiao R, Shao S, Jin B, Xiao G, Zhao M, Liang J (2014) Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition(CLD) modified ZSM-5. Bioresour Technol 155:57–62

    CAS  PubMed  Article  Google Scholar 

  42. Zhang X, Lei H, Zhu L, Zhu X, Qian M, Yadavalli G et al (2016) Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresour Technol 220:233–238

    CAS  PubMed  Article  Google Scholar 

  43. Zhang C, Hu X, Guo H, Wei T, Dong D, Hu G et al (2018) Pyrolysis of poplar, cellulose and lignin: Effects of acidity and alkalinity of the metal oxide catalysts. J Anal Appl Pyrolysis 134:590–605

    CAS  Article  Google Scholar 

  44. Zhang Z, Zhang C, Zhang L, Li C, Zhang S, Liu Q, Wang Y, Gholizadeh M, Hu X (2020) Pyrolysis of cellulose with co-feeding of formic or acetic acid. Cellulose 27:4909–4929

    CAS  Article  Google Scholar 

  45. Zong P, Jiang Y, Tian Y, Li J, Yuan M, Ji Y et al (2020) Pyrolysis behavior and product distributions of biomass six group components: starch, cellulose, hemicellulose, lignin, protein and oil. Energ Convers Manage 216:112777

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research work is supported by the Startup Foundation for Introducing Talent of NUIST (2243141501046) and the National Natural Science Foundation of China (21607079).

Author information

Affiliations

Authors

Contributions

LW: Resources, Writing—original draft, Methodology. YS: Writing—review & editing, Methodology, Project administration, Supervision.

Corresponding author

Correspondence to Yafei Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. And there is no animal studies or human participants’ involvement in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Shen, Y. Pyrolysis characteristics of cellulosic biomass in the presence of alkali and alkaline-earth-metal (AAEM) oxalates. Cellulose (2021). https://doi.org/10.1007/s10570-021-03756-3

Download citation

Keywords

  • Cellulose
  • Catalytic pyrolysis
  • Oxalates
  • Activation energy
  • Gas components