Developing bagasse towards superhydrophobic coatings

Abstract

Superhydrophobic surfaces have attracted great attention due to their interesting properties. The ever-increasing environmental concern accelerated the development of bio-based superhydrophobic coating materials. As a high-yield agricultural waste, bagasse is cheap, ready available, renewable and biodegradable. It would be an ideal raw material for the preparation of bio-based superhydrophobic coatings to further improve its application value. Although the hydrophobization of bagasse have been reported, the according works mainly focus on the reaction mechanism and/or their oil-absorption properties. As far as we know, the design of bagasse-based superhydrophobic coatings has been uncovered. Herein, mechanically pretreated bagasse was esterified with stearoyl chloride. Spray-coating the suspension of as-synthesized bagasse esters onto various substrates (glass slide, aluminum flake and filter paper), superhydrophobic surfaces were generated. SEM images in combination with the high-resolution C1s XPS deconvolution spectra implied that nano-structured bagasse esters were deposited on the synthesized micro-scaled esters, which was necessary for their superhydrophobicity. The as-prepared superhydrophobic surfaces exhibited good anti-fouling, oil absorption performance and high time/temperature/pH stability. This research would provide a novel perspective for the design of other bio-based superhydrophobic coatings.

Graphic abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abdelwahab NA, Shukry N, El-kalyoubi SF (2017) Preparation and characterization of polymer coated partially esterified sugarcane bagasse for separation of oil from seawater. Environ Technol 38:1905–1914. https://doi.org/10.1080/09593330.2016.1240243

    CAS  Article  PubMed  Google Scholar 

  2. Aloui H, Khwaldia K (2017) Effect of coating weight and nanoclay content on functional and physical properties of bionanocomposite-coated paper. Cellulose 24:4493–4507. https://doi.org/10.1007/s10570-017-1436-1

    CAS  Article  Google Scholar 

  3. Antunes FAF, Santos JC, Chandel AK, Carrier DJ, Peres GFD, Milessi TSS, da Silva SS (2019) Repeated batches as a feasible industrial process for hemicellulosic ethanol production from sugarcane bagasse by using immobilized yeast cells. Cellulose 26:3787–3800. https://doi.org/10.1007/s10570-019-02341-z

    CAS  Article  Google Scholar 

  4. Baidya A, Ganayee MA, Ravindran SJ, Tam KC, Das SK, Ras RHA, Pradeep T (2017) Organic sovent-free fabrication of durable and multifuctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11:11091–11099. https://doi.org/10.1021/acsnano.7b05170

    CAS  Article  PubMed  Google Scholar 

  5. Cai Y, Chen D, Li N, Xu Q, Li H, He J, Lu J (2019) Superhydrophobic metal-organic framework membrane with self-repairing for high-efficiency oil/water emulsion separation. ACS Sustainable Chem Eng 7:2709–2717. https://doi.org/10.1021/acssuschemeng.8b05793

    CAS  Article  Google Scholar 

  6. Chen M, Chen C, Liu C, Sun R (2013) Homogeneous modification of sugarcane bagasse with maleic anhydride in 1-butyl-3-methylimidazolium chloride without any catalysts. Ind Crop Prod 46:380–385. https://doi.org/10.1016/j.indcrop.2013.02.023

    CAS  Article  Google Scholar 

  7. Chen M, Zhang X, Zhang A, Liu C, Sun R (2016) Direct preparation of green and renewable aerogel materials from crude bagasse. Cellulose 23:1325–1334. https://doi.org/10.1007/s10570-015-0814-9

    CAS  Article  Google Scholar 

  8. Cheng QY, An XP, Li YD, Huang CL, Zeng JB (2017) Sustainable and biodegradable superhydrophobic coating from epoxidized soybean oil and ZnO nanoparticles on cellulosic substrates for efficient oil/water separation. ACS Sustainable Chem Eng 5:11440–11450. https://doi.org/10.1021/acssuschemeng.7b02549

    CAS  Article  Google Scholar 

  9. Cheng QY, Zhao XL, Weng YX, Li YD, Zeng JB (2019) Fully sustainable, nanoparticle-free, fluorine-free, and robust superhydrophobic cotton fabric fabricated via an eco-friendly method for efficient oil/water separation. ACS Sustainable Chem Eng 7:15696–15705. https://doi.org/10.1021/acssuschemeng.9b03852

    CAS  Article  Google Scholar 

  10. Ferreira BCS, Teodoro FS, Mageste AB, Gil LF, de Freitas RP, Gurgel LVA (2015) Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: Kinetic, equilibrium and thermodynamic studies. Ind Crop Prod 65:521–534. https://doi.org/10.1016/j.indcrop.2014.10.020

    CAS  Article  Google Scholar 

  11. Gan T, Zhang Y, Su Y, Hu H, Huang A, Huang Z, Chen D, Yang M, Wu J (2017) Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system. Cellulose 24:5371–5387. https://doi.org/10.1007/s10570-017-1524-2

    CAS  Article  Google Scholar 

  12. Gao H, Du J, Liao Y (2019) Removal of chromium (VI) and orange II from aqueous solution using magnetic polyetherimide/sugarcane bagasse. Cellulose 26:3285–3297. https://doi.org/10.1007/s10570-019-02301-7

    CAS  Article  Google Scholar 

  13. Halysh V, Sevastyanova O, Pikus S, Dobele G, Pasalskiy B, Gun’ko VM, Kartel M (2020) Sugarcane bagasse and straw as low-cost lignocellulosic sorbents for the removal of dyes and metal ions from water. Cellulose 27:8181–8197

    CAS  Article  Google Scholar 

  14. Huang J, Wang S, Lyu S, Fu F (2018) Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying. Ind Crop Prod 122:438–447. https://doi.org/10.1016/j.indcrop.2018.06.015

    CAS  Article  Google Scholar 

  15. Khanjani P, King AWT, Partl GJ, Johansson LS, Kostiainen MA, Ras RHA (2018) Superhydrophobic paper from nanostuctured fluorinated cellulose esters. ACS Appl Mater Inter 10:11280–11288. https://doi.org/10.1021/acsami.7b19310

    CAS  Article  Google Scholar 

  16. Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocelulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047. https://doi.org/10.1039/c1gc15522a

    CAS  Article  Google Scholar 

  17. Liu CF, Sun RC, Qin MH, Zhang AP, Ren JL, Xu F, Ye J, Wu SB (2007) Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride. Ind Crop Prod 26:212–219. https://doi.org/10.1016/j.indcrop.2007.03.007

    CAS  Article  Google Scholar 

  18. Liu H, Huang J, Chen Z, Chen G, Zhang KQ, Al-Deyab SS, Lai Y (2017) Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation. Chem Eng J 330:26–35. https://doi.org/10.1016/j.cej.2017.07.114

    CAS  Article  Google Scholar 

  19. Lu Y, Song J, Liu X, Xu W, Xing Y, Wei Z (2013) Preparation of superoleophobic and superhydrophobic titanium surfaces via an environmentally friendly electrochemical etching method. ACS Sustainable Chem Eng 1:102–109. https://doi.org/10.1021/sc3000527

    CAS  Article  Google Scholar 

  20. Moze M, Senegacnik M, Gregorčič P, Hocevar M, Zupancic M, Golobič I (2020) Laser-engineered microcavity surfaces with a nanoscale superhydrophobic coating for extreme boiling performance. ACS Appl Mater Interfaces 12:24419–24431. https://doi.org/10.1021/acsami.0c01594

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Niu X, Liu Y, Fang G, Huang C, Rojas OJ, Pan H (2018) Highly transparent, strong, and flexible films with modified cellulose nanofiber bearing UV shielding property. Biomacromol 19:4565–4575. https://doi.org/10.1021/acs.biomac.8b01252

    CAS  Article  Google Scholar 

  22. Pereira PHF, Voorwald HJC, Cioffi MOH, Da Silva MLCP, Rego AMB, Ferraria AM, De Pinho MN (2014) Sugarcane bagasse cellulose fibres and their hydrous nibium phosphate composites: synthesis and characterization by XPS, XRD and SEM. Cellulose 21:641–652. https://doi.org/10.1007/s10570-013-0113-2

    CAS  Article  Google Scholar 

  23. Qiu S, Li Y, Li G, Zhang Z, Li Y, Wu T (2019) Robust superhydrophobic sepiolite-coated polyurethane sponge for highly efficient and recyclable oil absorption. ACS Sustainable Chem Eng 7:5560–5567. https://doi.org/10.1021/acssuschemeng.9b00098

    CAS  Article  Google Scholar 

  24. Razavi SMR, Oh J, Sett S, Feng L, Yan X, Hoque MJ, Liu A, Haasch RT, Masoomi M, Bagheri R, Miljkovic N (2017) Superhydrophobic surfaces made from naturally derived hydrophobic materials. ACS Sustainable Chem Eng 5:11362–11370. https://doi.org/10.1021/acssuschemeng.7b02424

    CAS  Article  Google Scholar 

  25. Razavi SMR, Oh J, Haasch RT, Kim K, Masoomi M, Bagheri R, Slauch JM, Miljkovic N (2019) Environment-friendly antibiofouling superhydrophobic coatings. ACS Sustainable Chem Eng 7:14509–14520. https://doi.org/10.1021/acssuschemeng.9b02025

    CAS  Article  Google Scholar 

  26. Roosendaal SJ, Giebels IAME, Vredenberg AM, Habraken FHPM (1998) Determination of photoelectron attenuation lengths in thin oxide films on iron surfaces using quantitative XPS and elastic recoil detection. Surf Interface Anal 26:758–765. https://doi.org/10.1002/(SICI)1096-9918(199809)26:103.0.CO;2-B

    CAS  Article  Google Scholar 

  27. Said AEAA, Ludwick AG, Aglan HA (2009) Usefulness of raw bagasse for oil absorption: a comparison of raw and acylated bagasse and their components. Bioresource Technol 100:2219–2222. https://doi.org/10.1016/j.biortech.2008.09.060

    CAS  Article  Google Scholar 

  28. Seta FT, An X, Liu L, Zhang H, Yang J, Zhang W, Nie S, Yao S, Gao H, Xu Q, Bu Y, Liu H (2020) Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohyd Polym 234:115942. https://doi.org/10.1016/j.carbpol.2020.115942

    CAS  Article  Google Scholar 

  29. Subramanian S, Pande G, Weireld GD, Giraudon JM, Lamonier JF, Batra VS (2013) Sugarcane bagasse fly ash as an attractive agro-industry source for VOC removal on porous carbon. Ind Crop Prod 49:108–116. https://doi.org/10.1016/j.indcrop.2013.04.014

    CAS  Article  Google Scholar 

  30. Sun JX, Sun XF, Sun RC, Fowler P, Baird MS (2003) Inhomogeneities in the chemical structure of sugarcane bagasse lignin. J Agric Food Chem 51:6719–6725. https://doi.org/10.1021/jf034633j

    CAS  Article  PubMed  Google Scholar 

  31. Sun XF, Sun RC, Sun JX (2004) Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials. Bioresource Technol 95:343–350. https://doi.org/10.1016/j.biortech.2004.02.025

    CAS  Article  Google Scholar 

  32. Thai QB, Nguyen ST, Ho DK, Tran TD, Huynh DM, Do NHN, Luu TP, Le PK, Le DK, Phan-Thien N, Duong HM (2020) Cellulose-based aerogels from sugarcane bagasse for oil spill-cleaning and heat insulation applications. Carbohyd Polym 228:115365. https://doi.org/10.1016/j.carbpol.2019.115365

    CAS  Article  Google Scholar 

  33. Wang J, Geng G, Wang A, Liu X, Du J, Zou Z, Zhang S, Han F (2015) Double biomimetic fabrication of robustly superhydrophobic cotton fiber and its application in oil spill cleanup. Ind Crop Prod 77:36–43. https://doi.org/10.1016/j.indcrop.2015.08.044

    CAS  Article  Google Scholar 

  34. Wang S, Sha J, Wang W, Qin C, Li W, Qin C (2018) Superhydrophobic surfaces generated by one-pot spray-coating of chitosan-based nanoparticles. Carbohydr Polym 195:39–44. https://doi.org/10.1016/j.carbpol.2018.04.068

    CAS  Article  PubMed  Google Scholar 

  35. Wang Y, Zhang D, Deng J, Zhou F, Duan Z, Su Q, Pang S (2019) Mosquito’s compound eyes as inspiration for fabrication of conductive superhydrophobic nanocarbon materials from waste wheat straw. ACS Sustainable Chem Eng 7:3883–3894. https://doi.org/10.1021/acssuschemeng.8b04906

    CAS  Article  Google Scholar 

  36. Wei J, Zhang G, Dong J, Wang H, Guo Y, Zhuo X, Li C, Liang H, Gu S, Li C, Dong X, Li Y (2018) Facile, scalable spray-coating of stable emulsion for transparent self-cleaning surface of cellulose-based materials. ACS Sustainable Chem Eng 6:11335–11344. https://doi.org/10.1021/acssuschemeng.8b00962

    CAS  Article  Google Scholar 

  37. Xiang T, Han Y, Guo Z, Wang R, Zheng S, Li S, Li C, Dai X (2018) Fabrication of inherent anticorrosion superhydrophobic surfaces on metals. ACS Sustainable Chem Eng 6:5598–5606. https://doi.org/10.1021/acssuschemeng.8b00639

    CAS  Article  Google Scholar 

  38. Yang Y, Deng Y, Tong Z, Wang C (2014) Renewable lignin-based xerogels with self-cleaning properties and superhydrophobicity. ACS Sustainable Chem Eng 2:1729–1733. https://doi.org/10.1021/sc500250b

    CAS  Article  Google Scholar 

  39. Yang S, He WT, Fu Y, Zhang Y, Yuan TQ, Sun RC (2017) A bio-based coating onto the surface Populus fiber for oil spillage cleanup applications. Ind Crop Prod 98:38–45. https://doi.org/10.1016/j.indcrop.2017.01.031

    CAS  Article  Google Scholar 

  40. Zang J, Yu S, Zhu G, Zhou X (2019) Fabrication of superhydrophobic surface on aluminum alloy 6061 by a facile and effective anodic oxidation method. Surf Coat Tech 380:125078. https://doi.org/10.1016/j.surfcoat.2019.125078

    CAS  Article  Google Scholar 

  41. Zhang S, Li W, Wang W, Wang S, Qin C (2019) Reactive superhydrophobic paper from one-step spray-coating of cellulose-based derivative. Appl Surf Sci 497:143816. https://doi.org/10.1016/j.apsusc.2019.143816

    CAS  Article  Google Scholar 

  42. Zhao Y, Liu Y, Xu Q, Barahman M, Lyons AM (2015) Catalytic, self-cleaning surface with stable superhydrophobic properties: printed polydimethylsiloxane (PDMS) arrays embedded with TiO2 nanoparticles. ACS Appl Mater Inter 7:2632–2640. https://doi.org/10.1021/am5076315

    CAS  Article  Google Scholar 

  43. Zhou S, Liu P, Wang M, Zhao H, Yang J, Xu F (2016) Sustainable, reusable and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustainable Chem Eng 4:6409–6416. https://doi.org/10.1021/acssuschemeng.6b01075

    CAS  Article  Google Scholar 

  44. Zulfiqar U, Thomas AG, Yearsley K, Bolton LW, Matthews A, Lewis DJ (2019) Renewable adsorbent for the separation of surfactant-stabilized oil in water emulsions based on nanostructured sawdust. ACS Sustainable Chem Eng 7:18935–18942. https://doi.org/10.1021/acssuschemeng.9b04294

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Guangxi Province (2018GXNSFBA138027); Scientific Research Foundation of Guangxi University (XGZ170232); the Dean Project of Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control (ZR201804-7).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 955 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, C., Wang, W., Li, W. et al. Developing bagasse towards superhydrophobic coatings. Cellulose (2021). https://doi.org/10.1007/s10570-021-03743-8

Download citation

Keywords

  • Bagasse ester
  • Bio-based superhydrophobic coating
  • Anti-fouling
  • Oil adsorption
  • Durability