Toward sustainable biocomposites based on MMT and PHBH reinforced with acetylated cellulose nanocrystals

Abstract

Sustainable biocomposites have been developed from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) by solution-casting using montmorillonite (MMT) and acetylated cellulose nanocrystals (ACNs) as reinforcing agents. The morphological, thermal, crystallization behavior, tensile and barrier properties of biocomposites (A@MP) were evaluated. The morphological characterizations revealed the improved dispersion of ACNs in A@MP matrix. The ternary biocomposite showed up to 63.4% and 49 °C improvements in tensile strength and the maximum thermal decomposition temperature, respectively, compared to those of neat PHBH. Furthermore, the oxygen permeability (OP) and water vapor permeability (WVP) of A@MP with 2.5wt% ACN loading reached 0.60 × 103 mL·μm/m2·d·atm and 1.06 × 10–8 g/m·d·Pa, respectively. Overall, the research results have demonstrated the high potential of PHBH ternary biocomposite for food packaging applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Avila Ramirez JA, Cerrutti P, Bernal C, Ines Errea M, Laura Foresti M (2019) Biocomposites based on poly(lactic acid) and bacterial cellulose acetylated by an—hydroxyacid catalyzed route. J Polym Environ 27:510–520

    CAS  Article  Google Scholar 

  2. Caglayan T, Guven O (2020) Preparation and characterization of poly(ethylene-vinyl acetate) based biocomposites using radiation-modified montmorillonite. Radiat Phys Chem 169:107844

    CAS  Article  Google Scholar 

  3. Costa SS, Miranda AL, de Morais MG, Vieira Costa JA, Druzian JI (2019) Microalgae as source of polyhydroxyalkanoates (PHAs)- A review. Int J Biol Macromol 131:536–547

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. Czerniecka-Kubicka A, Fracz W, Jasiorski M, Blazejewski W, Pilch-Pitera B, Pyda M et al (2017) Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay. J Therm Anal Calorim 128:1513–1526

    CAS  Article  Google Scholar 

  5. Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395

    CAS  Article  Google Scholar 

  6. Dong JQ, Zhou WR, Su YH, Ma XJ (2020) Enhanced mechanical, thermal, and barrier properties of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/montmorillonite nanocomposites using silane coupling agent. Polym Compos 41:4538–4549

    CAS  Article  Google Scholar 

  7. Du J, Zhao G, Pan M, Zhuang L, Li D, Zhang R (2017) Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: effect of CNCs and CNFs. Carbohydr Polym 168:255–262

    CAS  Article  Google Scholar 

  8. Fortunati E, Peltzer M, Armentano I, Torre L, Jimenez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956

    CAS  PubMed  Article  Google Scholar 

  9. Gan L, Liao J, Lin N, Hu C, Wang H, Huang J (2017) Focus on gradientwise control of the surface acetylation of cellulose nanocrystals to optimize mechanical reinforcement for hydrophobic polyester-based biocomposites. ACS Omega 2:4725–4736

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Ghadikolaei SS, Omrani A, Ehsani M (2018) Influences of modified bacterial cellulose nanofibers (BCNs) on structural, thermophysical, optical, and barrier properties of poly ethylene-co-vinyl acetate (EVA) nanocomposite. Int J Biol Macromol 115:266–272

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Gonzalez-Ausejo J, Gamez-Perez J, Balart R, Maria Lagaron J, Cabedo L (2019) Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends. Polym Compos 40:E156–E168

    CAS  Article  Google Scholar 

  12. Gorade VG, Kotwal A, Chaudhary BU, Kale RD (2019) Surface modification of microcrystalline cellulose using rice bran oil: a bio-based approach to achieve water repellency. J Polym Res 26:217

    Article  CAS  Google Scholar 

  13. Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581

    CAS  Article  Google Scholar 

  14. Jiang G, Yu L, Zhang M, Wang F, Zhang S (2020) Poly(propylene carbonate)/ poly(3-hydroxybutyrate)-based biobiocomposites reinforced with cellulose nanocrystal for potential application as a packaging material. Polym Adv Technol 31:853–863

    CAS  Article  Google Scholar 

  15. Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997

    CAS  Article  Google Scholar 

  16. Kale RD, Gorade VG, Madye N, Chaudhary B, Bangde PS, Dandekar PP (2018) Preparation and characterization of biocomposite packaging film from poly(lactic acid) and acylated microcrystalline cellulose using rice bran oil. Int J Biol Macromol 118:1090–1102

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous biocomposites. Prog Polym Sci 87:197–227

    CAS  Article  Google Scholar 

  18. Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging a review. Packag Technol Sci 16:149–158

    CAS  Article  Google Scholar 

  19. Li BG, Zhang YD, Wu C, Guo B, Luo ZY (2018) Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly (acrylic acid). Carbohydr Polym 198:1–8

    PubMed  Article  CAS  Google Scholar 

  20. Li DN, Zhou J, Ma XJ, Li JN (2019a) Synthesis of a novel biocomposite of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with acetylated cellulose nanocrystals. Cellulose 26:8729–8743

    CAS  Article  Google Scholar 

  21. Li WW, Cai GX, Zhang PD (2019b) A simple and rapid Fourier transform infrared method for the determination of the degree of acetyl substitution of cellulose nanocrystals. J Mater Sci 54:8047–8056

    CAS  Article  Google Scholar 

  22. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842

    CAS  Article  Google Scholar 

  23. Mahmood H, Pegoretti A, Brusa RS, Ceccato R, Penasa L, Tarter S et al (2020) Molecular transport through 3-hydroxybutyrate co-3-hydroxyhexanoate biopolymer films with dispersed graphene oxide nanoparticles: gas barrier, structural and mechanical properties. Polym Test 81:106181

    CAS  Article  Google Scholar 

  24. Malmir S, Montero B, Rico M, Barral L, Bouza R (2017) Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co- 3-hydroxyvalerate) containing cellulose nanocrystals. Compos Part A Appl S 93:41–48

    CAS  Article  Google Scholar 

  25. Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264

    CAS  Article  Google Scholar 

  26. Teramoto N, Shibata M (2006) Synthesis and properties of pullulan acetate. Thermal properties, biodegradability, and a semi-clear gel formation in organic solvents. Carbohydr Polym 63:476–481

    CAS  Article  Google Scholar 

  27. Troschl C, Meixner K, Drosg B (2017) Cyanobacterial PHA production-review of recent advances and a summary of three years’ working experience running a pilot plant. Bioeng Basel 4:26

    Google Scholar 

  28. Tunc S, Duman O, Polat TG (2016) Effects of montmorillonite on properties of methyl cellulose/carvacrol based active antimicrobial biocomposites. Carbohydr Polym 150:259–268

    CAS  Article  Google Scholar 

  29. Vaezi K, Asadpour G, Sharifi SH (2020) Bio biocomposites based on cationic starch reinforced with montmorillonite and cellulose nanocrystals: fundamental properties and biodegradability study. Int J Biol Macromol 146:374–386

    CAS  PubMed  Article  Google Scholar 

  30. Vandewijngaarden J, Murariu M, Dubois P, Carleer R, Yperman J, Adriaensens P, Schreurs S, Lepot N, Peeters R, Buntinx M (2014) Gas permeability properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Polym Environ 22:501–507

    CAS  Article  Google Scholar 

  31. Wang JW, Gardner DJ, Stark NM, Bousfield DW, Tajvidi M, Cai ZY (2018) Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain Chem Eng 6:49–70

    CAS  Article  Google Scholar 

  32. Wu C, Zhang X, Wang X, Gao Q, Li X (2019) Surface modification of cellulose nanocrystal using succinic anhydride and its effects on poly (butylene succinate) based composites. Cellulose 26:3167–3181

    CAS  Article  Google Scholar 

  33. Xu CJ, Lv QL, Wu DF, Wang ZF (2017) Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose 24:2163–2175

    CAS  Article  Google Scholar 

  34. Xu PW, Cao Y, Wu BG, Ma PM, Dong WF, Bai HY et al (2018) Effects of modified nanocrystalline cellulose on the hydrophilicity, crystallization and mechanical behaviors of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). New J Chem 42:11972–11978

    CAS  Article  Google Scholar 

  35. Yin F, Li DN, Ma XJ, Zhang C (2019) Pretreatment of lignocellulosic feedstock to produce fermentable sugars for Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production using activated sludge. Bioresour Technol 290:121773

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. Zepic V, Poljansek I, Oven P, Cop M (2016) COST-FP1105: properties of PLA films reinforced with unmodified and acetylated freeze dried nanofibrillated cellulose. Holzforschung 70:1125–1134

    CAS  Article  Google Scholar 

  37. Zhang GR, Wu DF, Xie WY, Wang ZF, Xu CJ (2018) Green poly(beta- hydroxybutyrate)/starch nanocrystal composites: tuning the nucleation and spherulite morphology through surface acetylation of starch nanocrystal. Carbohydr Polym 195:79–88

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Zhang C, Jia RZ, Dong YF, Zhao LQ (2019) Preparation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) microspheres for controlled release of buprofezin. Environ Sci Pollut Res 26:15518–15526

    CAS  Article  Google Scholar 

  39. Zhao J, Zhao Y, Wang Z, Peng Z (2016) Effect of polymorphs of cellulose nanocrystal on the thermal properties of poly (lactic acid)/cellulose nanocrystal composites. Eur Phys J 39:118

    Google Scholar 

  40. Zheng T, Clemons CM, Pilla S (2020) Comparative study of direct compounding, coupling agent-aided and initiator-aided reactive extrusion to prepare cellulose nanocrystal/PHBV (CNC/PHBV) nanocomposite. ACS Sustain Chem Eng 8:814–822

    CAS  Article  Google Scholar 

  41. Zhou J, Ma XJ, Li JN, Zhu LZ (2019) Preparation and characterization of a bionanocomposite from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and cellulose nanocrystals. Cellulose 26:979–990

    CAS  Article  Google Scholar 

  42. Zhu JY, Chen YX, Yu HY, Guan Y, Zhou Y, Yang XG et al (2019) Comprehensive insight into degradation mechanism of green biopolyester biocomposites using functionalized cellulose nanocrystals. ACS Sustain Chem Eng 7:15537–15547

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research has been financially supported by Science Foundation of Tianjin Municipal Education Commission (2019ZD039), Natural Science Foundation of Tianjin city (18JCYBJC90100), and Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University), Ministry of Education (SWZ-MS201912).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Ma.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Ma, X., Li, D. et al. Toward sustainable biocomposites based on MMT and PHBH reinforced with acetylated cellulose nanocrystals. Cellulose (2021). https://doi.org/10.1007/s10570-021-03735-8

Download citation

Keywords

  • Acetylated cellulose nanocrystals
  • PHBH
  • Montmorillonite
  • Biocomposites
  • Reinforcing effect