Abstract
Cellulose is an important raw material used for the preparation of aerogel materials in life sciences. Cellulose aerogel's excellent biocompatibility, biodegradability, and nontoxicity combined with its multiple chemical functions make it an ideal carrier for drug delivery. Cellulose aerogels offer high porosity, large specific surface area, and ultra-light density. They can be used as drug carriers to improve bioavailability and drug loading. We reviewed the methods used to prepare cellulose aerogels with nanocellulose, renewable cellulose, and cellulose derivatives as raw materials. In addition, we described cellulose aerogels as a drug delivery carrier to inspire work in new drug delivery systems that intelligently use cellulose aerogels. Finally, we described the application prospects of intelligent and responsive cellulose aerogels in drug delivery systems.
This is a preview of subscription content, access via your institution.




References
Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979. https://doi.org/10.1016/j.carbpol.2011.08.078
Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109. https://doi.org/10.1016/j.ijbiomac.2017.08.140
Alnaief M, Obaidat RM, Alsmadi MM (2020) Preparation of hybrid alginate-chitosan aerogel as potential carriers for pulmonary drug delivery. Polymers. https://doi.org/10.3390/polym12102223
Ayazi H, Akhavan O, Raoufi M, Varshochian R, Hosseini Motlagh NS, Atyabi F (2019) Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf B Biointerfaces 186:110712. https://doi.org/10.1016/j.colsurfb.2019.110712
Ayazi H, Akhavan O, Raoufi M, Varshochian R, Hosseini Motlagh NS, Atyabi F (2020) Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf B 186:110712. https://doi.org/10.1016/j.colsurfb.2019.110712
Barrios E et al (2019) Nanomaterials in Advanced High-Performance Aerogel Composites: A Review. Polymers. https://doi.org/10.3390/polym11040726
Bhandari J, Mishra H, Mishra PK, Wimmer RW, Ahmad FJ, Talegaonkar S (2017) Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int J Nanomed 12:2021–2031. https://doi.org/10.2147/IJN.S124318
Buchtová N, Budtova T (2016) Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595. https://doi.org/10.1007/s10570-016-0960-8
Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121. https://doi.org/10.1007/s10570-018-2189-1
Bugnone CA, Ronchetti S, Manna L, Banchero M (2018) An emulsification/internal setting technique for the preparation of coated and uncoated hybrid silica/alginate aerogel beads for controlled drug delivery. J Supercrit Fluids 142:1–9. https://doi.org/10.1016/j.supflu.2018.07.007
Cai J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/Urea aqueous solution: structure and properties. Adv Mater 19:821–825. https://doi.org/10.1002/adma.200601521
Chen H et al (2018) Preparation of aligned porous niobium scaffold and the optimal control of freeze-drying process. Ceram Int 44:17174–17179. https://doi.org/10.1016/j.ceramint.2018.06.173
Chen YM et al (2019) Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26:6653–6667. https://doi.org/10.1007/s10570-019-02557-z
Ciftci D, Ubeyitogullari A, Huerta RR, Ciftci ON, Flores RA, Saldana MDA (2017) Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. J Supercrit Fluids 127:137–145. https://doi.org/10.1016/j.supflu.2017.04.002
Courtenay JC, Sharma RI, Scott JL (2018) Recent Advances in Modified Cellulose for Tissue Culture Applications. Molecules. https://doi.org/10.3390/molecules23030654
Del Gaudio P, Auriemma G, Mencherini T, Della Porta G, Reverchon E, Aquino RP (2013) Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci 102:185–194. https://doi.org/10.1002/jps.23361
Demirdogen RE, Kilic D, Emen FM, Askar S, Karacolak AI, Yesilkaynak T, Ihsan A (2020) Novel antibacterial cellulose acetate fibers modified with 2-fluoropyridine complexes. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127537
Doshi B, Sillanpää M, Kalliola S (2018) A review of bio-based materials for oil spill treatment. Water Res 135:262–277. https://doi.org/10.1016/j.watres.2018.02.034
Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose- DBNH CO2Et solutions and shaping into aerogel beads Green Chemistry 20:3993–4002 doi:https://doi.org/10.1039/c8gc01189c
Esquivel-Castro TA, Ibarra-Alonso MC, Oliva J, Martinez-Luevanos A (2019) Porous aerogel and core/shell nanoparticles for controlled drug delivery: a review. Materials Science & Engineering C-Materials for Biological Applications 96:915–940. https://doi.org/10.1016/j.msec.2018.11.067
Fan WT, Du JJ, Kou JF, Zhang ZY, Liu FY (2018) Hierarchical porous cellulose/lanthanide hybrid materials as luminescent sensor. J Rare Earths 36:1036–1043. https://doi.org/10.1016/j.jre.2018.03.021
Fan XC, Yang L, Wang T, Sun TD, Lu ST (2019) pH-responsive cellulose-based dual drug-loaded hydrogel for wound dressing. Eur Polymer J. https://doi.org/10.1016/j.eurpolymj.2019.109290
Fang Y et al (2016) Synthesis and characterization of cellulose triacetate aerogels with ultralow densities RSC. Advances 6:54054–54059. https://doi.org/10.1039/C6RA06067F
Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645. https://doi.org/10.1016/j.polymer.2006.09.004
Follmann HDM, Oliveira ON, Lazarin-Bidóia D, Nakamura CV, Huang X, Asefa T, Silva R (2018) Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale 10:1704–1715. https://doi.org/10.1039/C7NR08464A
France KJD, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing Nanocellulose. Chem Mater 29:4609–4631
Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7:429–444. https://doi.org/10.1517/17425241003602259
García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohyd Polym 86:1425–1438. https://doi.org/10.1016/j.carbpol.2011.06.066
García-González CA, Camino-Rey MC, Alnaief M, Zetzl C, Smirnova I (2012) Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. J Supercrit Fluids 66:297–306. https://doi.org/10.1016/j.supflu.2012.02.026
García-González AC et al (2019) An opinion paper on aerogels for biomedical and environmental applications. Molecules 24:1815. https://doi.org/10.3390/molecules24091815
Garcia-Gonzalez CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohyd Polym 117:797–806. https://doi.org/10.1016/j.carbpol.2014.10.045
Ge X, Shan Y, Wu L, Mu X, Peng H, Jiang Y (2018) High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Carbohyd Polym 197:277–283. https://doi.org/10.1016/j.carbpol.2018.06.014
Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res Part A 100A:1307–1315. https://doi.org/10.1002/jbm.a.34056
Goncalves VSS, Gurikov P, Poejo J, Matias AA, Heinrich S, Duarte CMM, Smirnova I (2016) Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm 107:160–170. https://doi.org/10.1016/j.ejpb.2016.07.003
Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45. https://doi.org/10.1016/j.cocis.2017.01.005
Grossereid I, Lethesh KC, Venkatraman V, Fiksdahl A (2019) New dual functionalized zwitterions and ionic liquids Synthesis and cellulose dissolution studies. J Mol Liq 292:111353. https://doi.org/10.1016/j.molliq.2019.111353
Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica Aerogel: Synthesis and Applications. J Nanomater 2010:1–11. https://doi.org/10.1155/2010/409310
Haimer E et al (2010) Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide. Macromol Symposia 294:64–74. https://doi.org/10.1002/masy.201000008
Hajian A, Fu Q, Berglund LA (2018) Recyclable and superelastic aerogels based on carbon nanotubes and carboxymethyl cellulose. Compos Sci Technol 159:1–10. https://doi.org/10.1016/j.compscitech.2018.01.002
Hatami T, Vigano J, Mei LHI, Martinez J (2020) Production of alginate-based aerogel particles using supercritical drying: Experiment, comprehensive mathematical model, and optimization. J Supercrit Fluids. https://doi.org/10.1016/j.supflu.2020.104791
Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453. https://doi.org/10.1039/C0GC00035C
Hees T, Zhong F, Rudolph T, Walther A, Mülhaupt R (2017) Nanocellulose aerogels for supporting iron catalysts and in situ formation of polyethylene nanocomposites. Adv Func Mater 27:1605586. https://doi.org/10.1002/adfm.201605586
Horcajada P et al (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178. https://doi.org/10.1038/nmat2608
Hudson SM, Cuculo JA (1980) The solubility of unmodified cellulose: a critique of the literature. J Macromol Sci Part C 18:1–82. https://doi.org/10.1080/00222358008080915
Illera D, Mesa J, Gomez H, Maury H (2018) Cellulose aerogels for thermal insulation in buildings: trends and challenges. Coatings 8:345. https://doi.org/10.3390/coatings8100345
Imke P, Philipp N, Yusuf Y, Pavel G, Barbara M, Irina SJM (2018) Polysaccharide-based aerogel bead production via jet cutting method. Materials 11:1287. https://doi.org/10.3390/ma11081287
Jiang F, Hu S, Hsieh Y-l (2018) Aqueous synthesis of compressible and thermally stable cellulose nanofibril-silica aerogel for CO2 adsorption. ACS Appl Nano Mater 1:6701–6710. https://doi.org/10.1021/acsanm.8b01515
Jiang Y, Chowdhury S, Balasubramanian R (2019) New insights into the role of nitrogen-bonding configurations in enhancing the photocatalytic activity of nitrogen-doped graphene aerogels. J Colloid Interface Sci 534:574–585. https://doi.org/10.1016/j.jcis.2018.09.064
Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602. https://doi.org/10.1021/acs.chemrev.5b00346
Kargarzadeh H et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress Polym Sci 87:197–227. https://doi.org/10.1016/j.progpolymsci.2018.07.008
Karimi M et al (2016) Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances . Acs Appl Mater Interfaces 8:21107. https://doi.org/10.1021/acsami.6b00371
Kaya M, Tabak A (2019) Recycling of an agricultural Bio-waste as a novel cellulose aerogel: a green chemistry study. J Polym Environ 28:323–330. https://doi.org/10.1007/s10924-019-01609-6
Khalil H et al (2020) A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers. https://doi.org/10.3390/polym12081759
Khoshnevisan K et al (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohyd Polym 198:131–141. https://doi.org/10.1016/j.carbpol.2018.06.072
Kim J-H et al (2015) Review of nanocellulose for sustainable future materials. Int J Precisi Eng Manufact Green Technol 2:197–213. https://doi.org/10.1007/s40684-015-0024-9
Kistler SS (1931) Coherent expanded aerogels and Jellies. Nature 127:741–741. https://doi.org/10.1038/127741a0
Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466. https://doi.org/10.1002/anie.201001273
Kontturi E, Laaksonen P, Linder MB, Nonappa GAH, Rojas OJ, Ikkala O (2018) Advanced materials through assembly of nanocelluloses. Adv Mater 30:1703779. https://doi.org/10.1002/adma.201703779
Kostag M, Pires PAR, El Seoud OA (2020) Dependence of cellulose dissolution in quaternary ammonium acetates/DMSO on the molecular structure of the electrolyte: use of solvatochromism, micro-calorimetry, and molecular dynamics simulations. Cellulose 27:3565–3580. https://doi.org/10.1007/s10570-020-03050-8
Langer R (1990) New methods of drug delivery. Science 249:1527–1533
Lee S, Kang KY, Jeong MJ, Potthast A, Liebner F (2017) Evaluation of Supercritical CO2 Dried Cellulose Aerogels as Nano-Biomaterials. J Korean Phys Soc 71:483–486. https://doi.org/10.3938/jkps.71.483
Li J et al (2018) Pore structure and pertinent physical properties of nanofibrillated cellulose (NFC)-based foam materials. Carbohydr Polym 201:141–150. https://doi.org/10.1016/j.carbpol.2018.08.008
Li J, Wang YJ, Zhang L, Xu ZY, Dai HQ, Wu WB (2019) Nanocellulose/gelatin composite cryogels for controlled drug release. Acs Sustain Chem Eng 7:6381–6389. https://doi.org/10.1021/acssuschemeng.9b00161
Liebner F et al (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352. https://doi.org/10.1002/mabi.200900371
Lin R, Li A, Lu L, Cao Y (2015) Preparation of bulk sodium carboxymethyl cellulose aerogels with tunable morphology. Carbohyd Polym 118:126–132. https://doi.org/10.1016/j.carbpol.2014.10.075
Liu W, Budtova T, Navard P (2011) Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions. Cellulose 18:911–920. https://doi.org/10.1007/s10570-011-9552-9
Liu ZM, Zhang SF, He B, Wang SJ, Kong FG (2020) Temperature-responsive hydroxypropyl methylcellulose-N-isopropylacrylamide aerogels for drug delivery systems. Cellulose 27:9493–9504. https://doi.org/10.1007/s10570-020-03426-w
Long LY, Weng YX, Wang YZ (2018) Cellulose aerogels: synthesis. Appl Prospect Polym. https://doi.org/10.3390/polym10060623
Lovskaya DD, Lebedev AE, Menshutina NV (2015) Aerogels as drug delivery systems: in vitro and in vivo evaluations. J Supercrit Fluids 106:115–121. https://doi.org/10.1016/j.supflu.2015.07.011
Ma YB, Nasri-Nasrabadi B, You X, Wang XG, Rainey TJ, Byrne N (2020) Regenerated cellulose fibers wetspun from different waste cellulose types. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1726244
Maleki H, Duraes L, Garcia-Gonzalez CA, Del Gaudio P, Portugal A, Mahmoudi M (2016) Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv Colloid Interface Sci 236:1–27. https://doi.org/10.1016/j.cis.2016.05.011
Marin E, Briceno MI, Caballero-George C (2013) Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomed 8:3071–3091. https://doi.org/10.2147/ijn.S47186
Martins BF, de Toledo PVO, Petri DFS (2017) Hydroxypropyl methylcellulose based aerogels: Synthesis, characterization and application as adsorbents for wastewater pollutants. Carbohyd Polym 155:173–181. https://doi.org/10.1016/j.carbpol.2016.08.082
Matsuyama K et al (2019) Antibacterial and antifungal properties of Ag nanoparticle-loaded cellulose nanofiber aerogels prepared by supercritical CO2 drying. J Supercrit Fluids 143:1–7. https://doi.org/10.1016/j.supflu.2018.08.008
Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40. https://doi.org/10.1016/j.cocis.2013.12.001
Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Technol 34:124–136. https://doi.org/10.1016/j.tifs.2013.10.003
Mohammadi A, Moghaddas J (2020) Mesoporous tablet-shaped potato starch aerogels for loading and release of the poorly water-soluble drug celecoxib. Chin J Chem Eng 28:1778–1787. https://doi.org/10.1016/j.cjche.2020.03.040
Mohammadian M, Jafarzadeh Kashi TS, Erfan M, Soorbaghi FP (2018) Synthesis and characterization of silica aerogel as a promising drug carrier system. J Drug Deliv Sci Technol 44:205–212. https://doi.org/10.1016/j.jddst.2017.12.017
Nguyen BN, Meador MAB, Scheiman D, McCorkle L (2017) Polyimide aerogels using triisocyanate as cross-linker. ACS Appl Mater Interfaces 9:27313–27321. https://doi.org/10.1021/acsami.7b07821
Ni X, Ke F, Xiao M, Wu K, Kuang Y, Corke H, Jiang F (2016) The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. Int J Biol Macromol 92:1130–1135. https://doi.org/10.1016/j.ijbiomac.2016.08.020
Nishiguchi A, Taguchi T (2020) A thixotropic cell-infiltrative nanocellulose hydrogel that promotes in vivo tissue remodeling. Acs Biomater Sci Eng 6:946–958. https://doi.org/10.1021/acsbiomaterials.9b01549
Pircher N et al (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:1949–1966. https://doi.org/10.1007/s10570-016-0896-z
Qin LL, He YW, Zhao XY, Zhang T, Qin Y, Du AI (2020) Preparation, characterization, and in vitro sustained release profile of resveratrol-loaded silica aerogel. Molecules. https://doi.org/10.3390/molecules25122752
Rajanna SK, Kumar D, Vinjamur M, Mukhopadhyay M (2015) Silica aerogel microparticles from rice Husk Ash for drug delivery. Ind Eng Chem Res 54:949–956. https://doi.org/10.1021/ie503867p
Ren W, Dan S, Ouyang L, Yong K, Deng L, Jian S (2017) pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biolog Macromol 103:248–253. https://doi.org/10.1016/j.ijbiomac.2017.05.064
Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromol 15:2188–2195. https://doi.org/10.1021/bm500345u
Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014a) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396. https://doi.org/10.1016/j.cocis.2014.10.003
Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014b) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396. https://doi.org/10.1016/j.cocis.2014.10.003
Salerno A, Pascual CD (2015) Bio-based polymers, supercritical fluids and tissue engineering. Process Biochem 50:826–838. https://doi.org/10.1016/j.procbio.2015.02.009
Schimper CB et al (2019) Fine-fibrous cellulose II aerogels of high specific surface from pulp solutions in TBAF center dot H2O/DMSO. Holzforschung 73:65–81. https://doi.org/10.1515/hf-2018-0102
Sha TZ et al (2018) Biomass waste derived carbon nanoballs aggregation networks-based aerogels as electrode material for electrochemical sensing. Sens Actuators B Chem 277:195–204. https://doi.org/10.1016/j.snb.2018.09.011
Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75. https://doi.org/10.1039/C5GC02396C
Shimada W, Furukawa S (2018) Rapid growth of ice crystal dendrite tips in dilute solution of trehalose. J Cryst Growth 493:25–29. https://doi.org/10.1016/j.jcrysgro.2018.04.024
Soorbaghi FP, Isanejad M, Salatin S, Ghorbani M, Jafari S, Derakhshankhah H (2019) Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomed Pharmacother 111:964–975. https://doi.org/10.1016/j.biopha.2019.01.014
Stergar J, Maver U (2016) Review of aerogel-based materials in biomedical applications. J Sol-Gel Sci Technol 77:738–752. https://doi.org/10.1007/s10971-016-3968-5
Sun TM, Zhang YS, Pang B, Hyun DC, Yang MX, Xia YN (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chemie Int Ed 53:12320–12364. https://doi.org/10.1002/anie.201403036
Sun B, Zhang M, Shen J, He Z, Fatehi P, Ni Y (2019) Applications of cellulose-based materials in sustained drug delivery systems. Curr Med Chem 26:2485–2501. https://doi.org/10.2174/0929867324666170705143308
Suo HB, Xu LL, Xue Y, Qiu X, Huang H, Hu Y (2020) Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: improvement of catalytic performance. Carbohyd Polym 234:115914. https://doi.org/10.1016/j.carbpol.2020.115914
Tai H, Mather ML, Howard D, Wang W (2007) Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cell Mater 14:64. https://doi.org/10.1016/j.stem.2007.03.002
Tang FQ, Li LL, Chen D (2012) Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Adv Mater 24:1504–1534. https://doi.org/10.1002/adma.201104763
Tang Y, Wang HQ, Hou DF, Tan H, Yang MB (2020) Regenerated cellulose aerogel: Morphology control and the application as the template for functional cellulose nanoparticles. J Appl Polym Sci 137:49127. https://doi.org/10.1002/app.49127
Ulker Z, Erkey C (2014) An emerging platform for drug delivery: Aerogel based systems. J Controll Release Soc 177:51–63. https://doi.org/10.1016/j.jconrel.2013.12.033
Ulker Z, Erkey C (2017) An advantageous technique to load drugs into aerogels: gas antisolvent crystallization inside the pores. J Supercrit Fluids 120:310–319. https://doi.org/10.1016/j.supflu.2016.05.033
Valo H et al (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—enhanced stability and release. J Controll Release 156:390–397. https://doi.org/10.1016/j.jconrel.2011.07.016
Valo H et al (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50:69–77. https://doi.org/10.1016/j.ejps.2013.02.023
van der Sman RGM (2016) Phase field simulations of ice crystal growth in sugar solutions. Int J Heat Mass Transf 95:153–161. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.089
Vareda JP, Lamy-Mendes A, Durães L (2018) A reconsideration on the definition of the term aerogel based on current drying trends. Microporous Mesoporous Mater 258:211–216. https://doi.org/10.1016/j.micromeso.2017.09.016
Verma C, Mishra A, Chauhan S, Verma P, Srivastava V, Quraishi MA, Ebenso EE (2019) Dissolution of cellulose in ionic liquids and their mixed cosolvents: a review. Sustain Chem Pharm 13:100162. https://doi.org/10.1016/j.scp.2019.100162
Wan C, Jiao Y, Wei S, Zhang L, Wu Y, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475. https://doi.org/10.1016/j.cej.2018.11.115
Wang C, Okubayashi S (2019) 3D aerogel of cellulose triacetate with supercritical antisolvent process for drug delivery. J Supercrit Fluids 148:33–41. https://doi.org/10.1016/j.supflu.2019.02.026
Wang X, Zhang Y, Jiang H, Song Y, Zhou Z, Zhao H (2016) Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater Lett 183:179–182. https://doi.org/10.1016/j.matlet.2016.07.081
Wang Y, Su Y, Wang W, Fang Y, Riffat SB, Jiang F (2019b) The advances of polysaccharide-based aerogels: preparation and potential application. Carbohyd Polym 226:115242. https://doi.org/10.1016/j.carbpol.2019.115242
Wang W, Fang Y, Ni X, Wu K, Wang Y, Jiang F, Riffat SB (2019a) Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Carbohyd Polym 224:115129. https://doi.org/10.1016/j.carbpol.2019.115129
Wang WW et al (2020) Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. J Hazard Mater 385:121582. https://doi.org/10.1016/j.jhazmat.2019.121582
Webber WL, Lago F, Thanos C, Mathiowitz E (2015) Characterization of soluble, salt-loaded, degradable PLGA films and their release of tetracycline. J Biomed Mater Res 41:18–29
Wei S, Ching YC, Chuah CH (2020) Synthesis of chitosan aerogels as promising carriers for drug delivery: a review. Carbohydr Polym 231:115744. https://doi.org/10.1016/j.carbpol.2019.115744
Xia J, Liu Z, Chen Y, Cao Y, Wang Z (2019) Effect of lignin on the performance of biodegradable cellulose aerogels made from wheat straw pulp-LiCl/DMSO solution. Cellulose 27:879–894. https://doi.org/10.1007/s10570-019-02826-x
Xiang C et al (2019) Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes. J Mater Sci 54:1872–1883. https://doi.org/10.1007/s10853-018-2900-5
Yan GH, Chen BL, Zeng XH, Sun Y, Tang X, Lin L (2020) Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116492
Zhang X et al (2015) Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog Solid State Chem 43:71–81. https://doi.org/10.1016/j.progsolidstchem.2015.03.001
Zhang X et al (2019) Molecular partitioning in ternary solutions of cellulose. Carbohyd Polym 220:157–162. https://doi.org/10.1016/j.carbpol.2019.05.054
Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X (2015) Polyethyleneimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery . Acs Appl Mater Interfaces 7:2607–2615. https://doi.org/10.1021/am507601m
Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G (2018) Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 57:7580–7608. https://doi.org/10.1002/anie.201709014
Zhou J, Hsieh Y-L (2020) Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104305
Zhu F (2019) Starch based aerogels: production, properties and applications. Trends Food Sci Technol 89:1–10. https://doi.org/10.1016/j.tifs.2019.05.001
Zhu S, Ramaswamy HS, Le Bail A (2005) Ice-crystal formation in gelatin gel during pressure shift versus conventional freezing. J Food Eng 66:69–76. https://doi.org/10.1016/j.jfoodeng.2004.02.035
Ziegler C, Wolf A, Liu W, Herrmann A-K, Gaponik N, Eychmüller A (2017) Modern Inorganic Aerogels. Angew Chemie Int Ed 56:13200–13221. https://doi.org/10.1002/anie.201611552
Acknowledgments
The authors are grateful to the National Natural Science Foundation of China (Grant No. 31971605), the International Joint Research Center for Biomass Chemistry and Materials, the Shaanxi International Science and Technology Cooperation Base (2018GHJD-19), the Shandong Key R&D Program (No. 2019JZZY010407 and 2019JZZY010304), the key scientific research plan (Key Laboratory) of Shaanxi Provincial Education Department (No. 17JS016). The Project was also supported by the Foundation (No. KF201814) of the Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.
Author information
Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, Z., Zhang, S., He, B. et al. Synthesis of cellulose aerogels as promising carriers for drug delivery: a review. Cellulose (2021). https://doi.org/10.1007/s10570-021-03734-9
Received:
Accepted:
Published:
Keywords
- Cellulose
- Cellulose aerogels
- Synthesis
- Drug delivery carriers