Synthesis of cellulose aerogels as promising carriers for drug delivery: a review

Abstract

Cellulose is an important raw material used for the preparation of aerogel materials in life sciences. Cellulose aerogel's excellent biocompatibility, biodegradability, and nontoxicity combined with its multiple chemical functions make it an ideal carrier for drug delivery. Cellulose aerogels offer high porosity, large specific surface area, and ultra-light density. They can be used as drug carriers to improve bioavailability and drug loading. We reviewed the methods used to prepare cellulose aerogels with nanocellulose, renewable cellulose, and cellulose derivatives as raw materials. In addition, we described cellulose aerogels as a drug delivery carrier to inspire work in new drug delivery systems that intelligently use cellulose aerogels. Finally, we described the application prospects of intelligent and responsive cellulose aerogels in drug delivery systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979. https://doi.org/10.1016/j.carbpol.2011.08.078

    CAS  Article  Google Scholar 

  2. Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109. https://doi.org/10.1016/j.ijbiomac.2017.08.140

    CAS  Article  PubMed  Google Scholar 

  3. Alnaief M, Obaidat RM, Alsmadi MM (2020) Preparation of hybrid alginate-chitosan aerogel as potential carriers for pulmonary drug delivery. Polymers. https://doi.org/10.3390/polym12102223

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ayazi H, Akhavan O, Raoufi M, Varshochian R, Hosseini Motlagh NS, Atyabi F (2019) Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf B Biointerfaces 186:110712. https://doi.org/10.1016/j.colsurfb.2019.110712

    CAS  Article  PubMed  Google Scholar 

  5. Ayazi H, Akhavan O, Raoufi M, Varshochian R, Hosseini Motlagh NS, Atyabi F (2020) Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf B 186:110712. https://doi.org/10.1016/j.colsurfb.2019.110712

    CAS  Article  Google Scholar 

  6. Barrios E et al (2019) Nanomaterials in Advanced High-Performance Aerogel Composites: A Review. Polymers. https://doi.org/10.3390/polym11040726

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhandari J, Mishra H, Mishra PK, Wimmer RW, Ahmad FJ, Talegaonkar S (2017) Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int J Nanomed 12:2021–2031. https://doi.org/10.2147/IJN.S124318

    CAS  Article  Google Scholar 

  8. Buchtová N, Budtova T (2016) Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595. https://doi.org/10.1007/s10570-016-0960-8

    CAS  Article  Google Scholar 

  9. Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121. https://doi.org/10.1007/s10570-018-2189-1

    CAS  Article  Google Scholar 

  10. Bugnone CA, Ronchetti S, Manna L, Banchero M (2018) An emulsification/internal setting technique for the preparation of coated and uncoated hybrid silica/alginate aerogel beads for controlled drug delivery. J Supercrit Fluids 142:1–9. https://doi.org/10.1016/j.supflu.2018.07.007

    CAS  Article  Google Scholar 

  11. Cai J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/Urea aqueous solution: structure and properties. Adv Mater 19:821–825. https://doi.org/10.1002/adma.200601521

    CAS  Article  Google Scholar 

  12. Chen H et al (2018) Preparation of aligned porous niobium scaffold and the optimal control of freeze-drying process. Ceram Int 44:17174–17179. https://doi.org/10.1016/j.ceramint.2018.06.173

    CAS  Article  Google Scholar 

  13. Chen YM et al (2019) Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26:6653–6667. https://doi.org/10.1007/s10570-019-02557-z

    CAS  Article  Google Scholar 

  14. Ciftci D, Ubeyitogullari A, Huerta RR, Ciftci ON, Flores RA, Saldana MDA (2017) Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. J Supercrit Fluids 127:137–145. https://doi.org/10.1016/j.supflu.2017.04.002

    CAS  Article  Google Scholar 

  15. Courtenay JC, Sharma RI, Scott JL (2018) Recent Advances in Modified Cellulose for Tissue Culture Applications. Molecules. https://doi.org/10.3390/molecules23030654

    Article  PubMed  PubMed Central  Google Scholar 

  16. Del Gaudio P, Auriemma G, Mencherini T, Della Porta G, Reverchon E, Aquino RP (2013) Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci 102:185–194. https://doi.org/10.1002/jps.23361

    CAS  Article  PubMed  Google Scholar 

  17. Demirdogen RE, Kilic D, Emen FM, Askar S, Karacolak AI, Yesilkaynak T, Ihsan A (2020) Novel antibacterial cellulose acetate fibers modified with 2-fluoropyridine complexes. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127537

    Article  Google Scholar 

  18. Doshi B, Sillanpää M, Kalliola S (2018) A review of bio-based materials for oil spill treatment. Water Res 135:262–277. https://doi.org/10.1016/j.watres.2018.02.034

    CAS  Article  PubMed  Google Scholar 

  19. Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose- DBNH CO2Et solutions and shaping into aerogel beads Green Chemistry 20:3993–4002 doi:https://doi.org/10.1039/c8gc01189c

  20. Esquivel-Castro TA, Ibarra-Alonso MC, Oliva J, Martinez-Luevanos A (2019) Porous aerogel and core/shell nanoparticles for controlled drug delivery: a review. Materials Science & Engineering C-Materials for Biological Applications 96:915–940. https://doi.org/10.1016/j.msec.2018.11.067

    CAS  Article  Google Scholar 

  21. Fan WT, Du JJ, Kou JF, Zhang ZY, Liu FY (2018) Hierarchical porous cellulose/lanthanide hybrid materials as luminescent sensor. J Rare Earths 36:1036–1043. https://doi.org/10.1016/j.jre.2018.03.021

    CAS  Article  Google Scholar 

  22. Fan XC, Yang L, Wang T, Sun TD, Lu ST (2019) pH-responsive cellulose-based dual drug-loaded hydrogel for wound dressing. Eur Polymer J. https://doi.org/10.1016/j.eurpolymj.2019.109290

    Article  Google Scholar 

  23. Fang Y et al (2016) Synthesis and characterization of cellulose triacetate aerogels with ultralow densities RSC. Advances 6:54054–54059. https://doi.org/10.1039/C6RA06067F

    CAS  Article  Google Scholar 

  24. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645. https://doi.org/10.1016/j.polymer.2006.09.004

    CAS  Article  Google Scholar 

  25. Follmann HDM, Oliveira ON, Lazarin-Bidóia D, Nakamura CV, Huang X, Asefa T, Silva R (2018) Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale 10:1704–1715. https://doi.org/10.1039/C7NR08464A

    CAS  Article  PubMed  Google Scholar 

  26. France KJD, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing Nanocellulose. Chem Mater 29:4609–4631

    Article  Google Scholar 

  27. Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7:429–444. https://doi.org/10.1517/17425241003602259

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohyd Polym 86:1425–1438. https://doi.org/10.1016/j.carbpol.2011.06.066

    CAS  Article  Google Scholar 

  29. García-González CA, Camino-Rey MC, Alnaief M, Zetzl C, Smirnova I (2012) Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. J Supercrit Fluids 66:297–306. https://doi.org/10.1016/j.supflu.2012.02.026

    CAS  Article  Google Scholar 

  30. García-González AC et al (2019) An opinion paper on aerogels for biomedical and environmental applications. Molecules 24:1815. https://doi.org/10.3390/molecules24091815

    CAS  Article  PubMed Central  Google Scholar 

  31. Garcia-Gonzalez CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohyd Polym 117:797–806. https://doi.org/10.1016/j.carbpol.2014.10.045

    CAS  Article  Google Scholar 

  32. Ge X, Shan Y, Wu L, Mu X, Peng H, Jiang Y (2018) High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Carbohyd Polym 197:277–283. https://doi.org/10.1016/j.carbpol.2018.06.014

    CAS  Article  Google Scholar 

  33. Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res Part A 100A:1307–1315. https://doi.org/10.1002/jbm.a.34056

    CAS  Article  Google Scholar 

  34. Goncalves VSS, Gurikov P, Poejo J, Matias AA, Heinrich S, Duarte CMM, Smirnova I (2016) Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm 107:160–170. https://doi.org/10.1016/j.ejpb.2016.07.003

    CAS  Article  PubMed  Google Scholar 

  35. Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45. https://doi.org/10.1016/j.cocis.2017.01.005

    CAS  Article  Google Scholar 

  36. Grossereid I, Lethesh KC, Venkatraman V, Fiksdahl A (2019) New dual functionalized zwitterions and ionic liquids Synthesis and cellulose dissolution studies. J Mol Liq 292:111353. https://doi.org/10.1016/j.molliq.2019.111353

    CAS  Article  Google Scholar 

  37. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica Aerogel: Synthesis and Applications. J Nanomater 2010:1–11. https://doi.org/10.1155/2010/409310

    CAS  Article  Google Scholar 

  38. Haimer E et al (2010) Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide. Macromol Symposia 294:64–74. https://doi.org/10.1002/masy.201000008

    CAS  Article  Google Scholar 

  39. Hajian A, Fu Q, Berglund LA (2018) Recyclable and superelastic aerogels based on carbon nanotubes and carboxymethyl cellulose. Compos Sci Technol 159:1–10. https://doi.org/10.1016/j.compscitech.2018.01.002

    CAS  Article  Google Scholar 

  40. Hatami T, Vigano J, Mei LHI, Martinez J (2020) Production of alginate-based aerogel particles using supercritical drying: Experiment, comprehensive mathematical model, and optimization. J Supercrit Fluids. https://doi.org/10.1016/j.supflu.2020.104791

    Article  Google Scholar 

  41. Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453. https://doi.org/10.1039/C0GC00035C

    CAS  Article  Google Scholar 

  42. Hees T, Zhong F, Rudolph T, Walther A, Mülhaupt R (2017) Nanocellulose aerogels for supporting iron catalysts and in situ formation of polyethylene nanocomposites. Adv Func Mater 27:1605586. https://doi.org/10.1002/adfm.201605586

    CAS  Article  Google Scholar 

  43. Horcajada P et al (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178. https://doi.org/10.1038/nmat2608

    CAS  Article  PubMed  Google Scholar 

  44. Hudson SM, Cuculo JA (1980) The solubility of unmodified cellulose: a critique of the literature. J Macromol Sci Part C 18:1–82. https://doi.org/10.1080/00222358008080915

    Article  Google Scholar 

  45. Illera D, Mesa J, Gomez H, Maury H (2018) Cellulose aerogels for thermal insulation in buildings: trends and challenges. Coatings 8:345. https://doi.org/10.3390/coatings8100345

    CAS  Article  Google Scholar 

  46. Imke P, Philipp N, Yusuf Y, Pavel G, Barbara M, Irina SJM (2018) Polysaccharide-based aerogel bead production via jet cutting method. Materials 11:1287. https://doi.org/10.3390/ma11081287

    CAS  Article  Google Scholar 

  47. Jiang F, Hu S, Hsieh Y-l (2018) Aqueous synthesis of compressible and thermally stable cellulose nanofibril-silica aerogel for CO2 adsorption. ACS Appl Nano Mater 1:6701–6710. https://doi.org/10.1021/acsanm.8b01515

    CAS  Article  Google Scholar 

  48. Jiang Y, Chowdhury S, Balasubramanian R (2019) New insights into the role of nitrogen-bonding configurations in enhancing the photocatalytic activity of nitrogen-doped graphene aerogels. J Colloid Interface Sci 534:574–585. https://doi.org/10.1016/j.jcis.2018.09.064

    CAS  Article  PubMed  Google Scholar 

  49. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602. https://doi.org/10.1021/acs.chemrev.5b00346

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Kargarzadeh H et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress Polym Sci 87:197–227. https://doi.org/10.1016/j.progpolymsci.2018.07.008

    CAS  Article  Google Scholar 

  51. Karimi M et al (2016) Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances . Acs Appl Mater Interfaces 8:21107. https://doi.org/10.1021/acsami.6b00371

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Kaya M, Tabak A (2019) Recycling of an agricultural Bio-waste as a novel cellulose aerogel: a green chemistry study. J Polym Environ 28:323–330. https://doi.org/10.1007/s10924-019-01609-6

    CAS  Article  Google Scholar 

  53. Khalil H et al (2020) A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers. https://doi.org/10.3390/polym12081759

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khoshnevisan K et al (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohyd Polym 198:131–141. https://doi.org/10.1016/j.carbpol.2018.06.072

    CAS  Article  Google Scholar 

  55. Kim J-H et al (2015) Review of nanocellulose for sustainable future materials. Int J Precisi Eng Manufact Green Technol 2:197–213. https://doi.org/10.1007/s40684-015-0024-9

    Article  Google Scholar 

  56. Kistler SS (1931) Coherent expanded aerogels and Jellies. Nature 127:741–741. https://doi.org/10.1038/127741a0

    CAS  Article  Google Scholar 

  57. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466. https://doi.org/10.1002/anie.201001273

    CAS  Article  PubMed  Google Scholar 

  58. Kontturi E, Laaksonen P, Linder MB, Nonappa GAH, Rojas OJ, Ikkala O (2018) Advanced materials through assembly of nanocelluloses. Adv Mater 30:1703779. https://doi.org/10.1002/adma.201703779

    CAS  Article  Google Scholar 

  59. Kostag M, Pires PAR, El Seoud OA (2020) Dependence of cellulose dissolution in quaternary ammonium acetates/DMSO on the molecular structure of the electrolyte: use of solvatochromism, micro-calorimetry, and molecular dynamics simulations. Cellulose 27:3565–3580. https://doi.org/10.1007/s10570-020-03050-8

    CAS  Article  Google Scholar 

  60. Langer R (1990) New methods of drug delivery. Science 249:1527–1533

    CAS  Article  Google Scholar 

  61. Lee S, Kang KY, Jeong MJ, Potthast A, Liebner F (2017) Evaluation of Supercritical CO2 Dried Cellulose Aerogels as Nano-Biomaterials. J Korean Phys Soc 71:483–486. https://doi.org/10.3938/jkps.71.483

    CAS  Article  Google Scholar 

  62. Li J et al (2018) Pore structure and pertinent physical properties of nanofibrillated cellulose (NFC)-based foam materials. Carbohydr Polym 201:141–150. https://doi.org/10.1016/j.carbpol.2018.08.008

    CAS  Article  PubMed  Google Scholar 

  63. Li J, Wang YJ, Zhang L, Xu ZY, Dai HQ, Wu WB (2019) Nanocellulose/gelatin composite cryogels for controlled drug release. Acs Sustain Chem Eng 7:6381–6389. https://doi.org/10.1021/acssuschemeng.9b00161

    CAS  Article  Google Scholar 

  64. Liebner F et al (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352. https://doi.org/10.1002/mabi.200900371

    CAS  Article  PubMed  Google Scholar 

  65. Lin R, Li A, Lu L, Cao Y (2015) Preparation of bulk sodium carboxymethyl cellulose aerogels with tunable morphology. Carbohyd Polym 118:126–132. https://doi.org/10.1016/j.carbpol.2014.10.075

    CAS  Article  Google Scholar 

  66. Liu W, Budtova T, Navard P (2011) Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions. Cellulose 18:911–920. https://doi.org/10.1007/s10570-011-9552-9

    CAS  Article  Google Scholar 

  67. Liu ZM, Zhang SF, He B, Wang SJ, Kong FG (2020) Temperature-responsive hydroxypropyl methylcellulose-N-isopropylacrylamide aerogels for drug delivery systems. Cellulose 27:9493–9504. https://doi.org/10.1007/s10570-020-03426-w

    CAS  Article  Google Scholar 

  68. Long LY, Weng YX, Wang YZ (2018) Cellulose aerogels: synthesis. Appl Prospect Polym. https://doi.org/10.3390/polym10060623

    Article  Google Scholar 

  69. Lovskaya DD, Lebedev AE, Menshutina NV (2015) Aerogels as drug delivery systems: in vitro and in vivo evaluations. J Supercrit Fluids 106:115–121. https://doi.org/10.1016/j.supflu.2015.07.011

    CAS  Article  Google Scholar 

  70. Ma YB, Nasri-Nasrabadi B, You X, Wang XG, Rainey TJ, Byrne N (2020) Regenerated cellulose fibers wetspun from different waste cellulose types. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1726244

    Article  Google Scholar 

  71. Maleki H, Duraes L, Garcia-Gonzalez CA, Del Gaudio P, Portugal A, Mahmoudi M (2016) Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv Colloid Interface Sci 236:1–27. https://doi.org/10.1016/j.cis.2016.05.011

    CAS  Article  PubMed  Google Scholar 

  72. Marin E, Briceno MI, Caballero-George C (2013) Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomed 8:3071–3091. https://doi.org/10.2147/ijn.S47186

    Article  Google Scholar 

  73. Martins BF, de Toledo PVO, Petri DFS (2017) Hydroxypropyl methylcellulose based aerogels: Synthesis, characterization and application as adsorbents for wastewater pollutants. Carbohyd Polym 155:173–181. https://doi.org/10.1016/j.carbpol.2016.08.082

    CAS  Article  Google Scholar 

  74. Matsuyama K et al (2019) Antibacterial and antifungal properties of Ag nanoparticle-loaded cellulose nanofiber aerogels prepared by supercritical CO2 drying. J Supercrit Fluids 143:1–7. https://doi.org/10.1016/j.supflu.2018.08.008

    CAS  Article  Google Scholar 

  75. Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40. https://doi.org/10.1016/j.cocis.2013.12.001

    CAS  Article  Google Scholar 

  76. Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Technol 34:124–136. https://doi.org/10.1016/j.tifs.2013.10.003

    CAS  Article  Google Scholar 

  77. Mohammadi A, Moghaddas J (2020) Mesoporous tablet-shaped potato starch aerogels for loading and release of the poorly water-soluble drug celecoxib. Chin J Chem Eng 28:1778–1787. https://doi.org/10.1016/j.cjche.2020.03.040

    Article  Google Scholar 

  78. Mohammadian M, Jafarzadeh Kashi TS, Erfan M, Soorbaghi FP (2018) Synthesis and characterization of silica aerogel as a promising drug carrier system. J Drug Deliv Sci Technol 44:205–212. https://doi.org/10.1016/j.jddst.2017.12.017

    CAS  Article  Google Scholar 

  79. Nguyen BN, Meador MAB, Scheiman D, McCorkle L (2017) Polyimide aerogels using triisocyanate as cross-linker. ACS Appl Mater Interfaces 9:27313–27321. https://doi.org/10.1021/acsami.7b07821

    CAS  Article  PubMed  Google Scholar 

  80. Ni X, Ke F, Xiao M, Wu K, Kuang Y, Corke H, Jiang F (2016) The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. Int J Biol Macromol 92:1130–1135. https://doi.org/10.1016/j.ijbiomac.2016.08.020

    CAS  Article  PubMed  Google Scholar 

  81. Nishiguchi A, Taguchi T (2020) A thixotropic cell-infiltrative nanocellulose hydrogel that promotes in vivo tissue remodeling. Acs Biomater Sci Eng 6:946–958. https://doi.org/10.1021/acsbiomaterials.9b01549

    CAS  Article  PubMed  Google Scholar 

  82. Pircher N et al (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:1949–1966. https://doi.org/10.1007/s10570-016-0896-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Qin LL, He YW, Zhao XY, Zhang T, Qin Y, Du AI (2020) Preparation, characterization, and in vitro sustained release profile of resveratrol-loaded silica aerogel. Molecules. https://doi.org/10.3390/molecules25122752

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rajanna SK, Kumar D, Vinjamur M, Mukhopadhyay M (2015) Silica aerogel microparticles from rice Husk Ash for drug delivery. Ind Eng Chem Res 54:949–956. https://doi.org/10.1021/ie503867p

    CAS  Article  Google Scholar 

  85. Ren W, Dan S, Ouyang L, Yong K, Deng L, Jian S (2017) pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biolog Macromol 103:248–253. https://doi.org/10.1016/j.ijbiomac.2017.05.064

    CAS  Article  Google Scholar 

  86. Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromol 15:2188–2195. https://doi.org/10.1021/bm500345u

    CAS  Article  Google Scholar 

  87. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014a) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396. https://doi.org/10.1016/j.cocis.2014.10.003

    CAS  Article  Google Scholar 

  88. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014b) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396. https://doi.org/10.1016/j.cocis.2014.10.003

    CAS  Article  Google Scholar 

  89. Salerno A, Pascual CD (2015) Bio-based polymers, supercritical fluids and tissue engineering. Process Biochem 50:826–838. https://doi.org/10.1016/j.procbio.2015.02.009

    CAS  Article  Google Scholar 

  90. Schimper CB et al (2019) Fine-fibrous cellulose II aerogels of high specific surface from pulp solutions in TBAF center dot H2O/DMSO. Holzforschung 73:65–81. https://doi.org/10.1515/hf-2018-0102

    CAS  Article  Google Scholar 

  91. Sha TZ et al (2018) Biomass waste derived carbon nanoballs aggregation networks-based aerogels as electrode material for electrochemical sensing. Sens Actuators B Chem 277:195–204. https://doi.org/10.1016/j.snb.2018.09.011

    CAS  Article  Google Scholar 

  92. Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75. https://doi.org/10.1039/C5GC02396C

    Article  Google Scholar 

  93. Shimada W, Furukawa S (2018) Rapid growth of ice crystal dendrite tips in dilute solution of trehalose. J Cryst Growth 493:25–29. https://doi.org/10.1016/j.jcrysgro.2018.04.024

    CAS  Article  Google Scholar 

  94. Soorbaghi FP, Isanejad M, Salatin S, Ghorbani M, Jafari S, Derakhshankhah H (2019) Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomed Pharmacother 111:964–975. https://doi.org/10.1016/j.biopha.2019.01.014

    CAS  Article  PubMed  Google Scholar 

  95. Stergar J, Maver U (2016) Review of aerogel-based materials in biomedical applications. J Sol-Gel Sci Technol 77:738–752. https://doi.org/10.1007/s10971-016-3968-5

    CAS  Article  Google Scholar 

  96. Sun TM, Zhang YS, Pang B, Hyun DC, Yang MX, Xia YN (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chemie Int Ed 53:12320–12364. https://doi.org/10.1002/anie.201403036

    CAS  Article  Google Scholar 

  97. Sun B, Zhang M, Shen J, He Z, Fatehi P, Ni Y (2019) Applications of cellulose-based materials in sustained drug delivery systems. Curr Med Chem 26:2485–2501. https://doi.org/10.2174/0929867324666170705143308

    CAS  Article  PubMed  Google Scholar 

  98. Suo HB, Xu LL, Xue Y, Qiu X, Huang H, Hu Y (2020) Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: improvement of catalytic performance. Carbohyd Polym 234:115914. https://doi.org/10.1016/j.carbpol.2020.115914

    CAS  Article  Google Scholar 

  99. Tai H, Mather ML, Howard D, Wang W (2007) Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cell Mater 14:64. https://doi.org/10.1016/j.stem.2007.03.002

    CAS  Article  PubMed  Google Scholar 

  100. Tang FQ, Li LL, Chen D (2012) Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Adv Mater 24:1504–1534. https://doi.org/10.1002/adma.201104763

    CAS  Article  PubMed  Google Scholar 

  101. Tang Y, Wang HQ, Hou DF, Tan H, Yang MB (2020) Regenerated cellulose aerogel: Morphology control and the application as the template for functional cellulose nanoparticles. J Appl Polym Sci 137:49127. https://doi.org/10.1002/app.49127

    CAS  Article  Google Scholar 

  102. Ulker Z, Erkey C (2014) An emerging platform for drug delivery: Aerogel based systems. J Controll Release Soc 177:51–63. https://doi.org/10.1016/j.jconrel.2013.12.033

    CAS  Article  Google Scholar 

  103. Ulker Z, Erkey C (2017) An advantageous technique to load drugs into aerogels: gas antisolvent crystallization inside the pores. J Supercrit Fluids 120:310–319. https://doi.org/10.1016/j.supflu.2016.05.033

    CAS  Article  Google Scholar 

  104. Valo H et al (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—enhanced stability and release. J Controll Release 156:390–397. https://doi.org/10.1016/j.jconrel.2011.07.016

    CAS  Article  Google Scholar 

  105. Valo H et al (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50:69–77. https://doi.org/10.1016/j.ejps.2013.02.023

    CAS  Article  PubMed  Google Scholar 

  106. van der Sman RGM (2016) Phase field simulations of ice crystal growth in sugar solutions. Int J Heat Mass Transf 95:153–161. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.089

    Article  Google Scholar 

  107. Vareda JP, Lamy-Mendes A, Durães L (2018) A reconsideration on the definition of the term aerogel based on current drying trends. Microporous Mesoporous Mater 258:211–216. https://doi.org/10.1016/j.micromeso.2017.09.016

    CAS  Article  Google Scholar 

  108. Verma C, Mishra A, Chauhan S, Verma P, Srivastava V, Quraishi MA, Ebenso EE (2019) Dissolution of cellulose in ionic liquids and their mixed cosolvents: a review. Sustain Chem Pharm 13:100162. https://doi.org/10.1016/j.scp.2019.100162

    Article  Google Scholar 

  109. Wan C, Jiao Y, Wei S, Zhang L, Wu Y, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475. https://doi.org/10.1016/j.cej.2018.11.115

    CAS  Article  Google Scholar 

  110. Wang C, Okubayashi S (2019) 3D aerogel of cellulose triacetate with supercritical antisolvent process for drug delivery. J Supercrit Fluids 148:33–41. https://doi.org/10.1016/j.supflu.2019.02.026

    CAS  Article  Google Scholar 

  111. Wang X, Zhang Y, Jiang H, Song Y, Zhou Z, Zhao H (2016) Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater Lett 183:179–182. https://doi.org/10.1016/j.matlet.2016.07.081

    CAS  Article  Google Scholar 

  112. Wang Y, Su Y, Wang W, Fang Y, Riffat SB, Jiang F (2019b) The advances of polysaccharide-based aerogels: preparation and potential application. Carbohyd Polym 226:115242. https://doi.org/10.1016/j.carbpol.2019.115242

    CAS  Article  Google Scholar 

  113. Wang W, Fang Y, Ni X, Wu K, Wang Y, Jiang F, Riffat SB (2019a) Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Carbohyd Polym 224:115129. https://doi.org/10.1016/j.carbpol.2019.115129

    CAS  Article  Google Scholar 

  114. Wang WW et al (2020) Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. J Hazard Mater 385:121582. https://doi.org/10.1016/j.jhazmat.2019.121582

    CAS  Article  PubMed  Google Scholar 

  115. Webber WL, Lago F, Thanos C, Mathiowitz E (2015) Characterization of soluble, salt-loaded, degradable PLGA films and their release of tetracycline. J Biomed Mater Res 41:18–29

    Article  Google Scholar 

  116. Wei S, Ching YC, Chuah CH (2020) Synthesis of chitosan aerogels as promising carriers for drug delivery: a review. Carbohydr Polym 231:115744. https://doi.org/10.1016/j.carbpol.2019.115744

    CAS  Article  PubMed  Google Scholar 

  117. Xia J, Liu Z, Chen Y, Cao Y, Wang Z (2019) Effect of lignin on the performance of biodegradable cellulose aerogels made from wheat straw pulp-LiCl/DMSO solution. Cellulose 27:879–894. https://doi.org/10.1007/s10570-019-02826-x

    CAS  Article  Google Scholar 

  118. Xiang C et al (2019) Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes. J Mater Sci 54:1872–1883. https://doi.org/10.1007/s10853-018-2900-5

    CAS  Article  Google Scholar 

  119. Yan GH, Chen BL, Zeng XH, Sun Y, Tang X, Lin L (2020) Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116492

    Article  Google Scholar 

  120. Zhang X et al (2015) Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog Solid State Chem 43:71–81. https://doi.org/10.1016/j.progsolidstchem.2015.03.001

    CAS  Article  Google Scholar 

  121. Zhang X et al (2019) Molecular partitioning in ternary solutions of cellulose. Carbohyd Polym 220:157–162. https://doi.org/10.1016/j.carbpol.2019.05.054

    CAS  Article  Google Scholar 

  122. Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X (2015) Polyethyleneimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery . Acs Appl Mater Interfaces 7:2607–2615. https://doi.org/10.1021/am507601m

    CAS  Article  PubMed  Google Scholar 

  123. Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G (2018) Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 57:7580–7608. https://doi.org/10.1002/anie.201709014

    CAS  Article  Google Scholar 

  124. Zhou J, Hsieh Y-L (2020) Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104305

    Article  PubMed  Google Scholar 

  125. Zhu F (2019) Starch based aerogels: production, properties and applications. Trends Food Sci Technol 89:1–10. https://doi.org/10.1016/j.tifs.2019.05.001

    CAS  Article  Google Scholar 

  126. Zhu S, Ramaswamy HS, Le Bail A (2005) Ice-crystal formation in gelatin gel during pressure shift versus conventional freezing. J Food Eng 66:69–76. https://doi.org/10.1016/j.jfoodeng.2004.02.035

    Article  Google Scholar 

  127. Ziegler C, Wolf A, Liu W, Herrmann A-K, Gaponik N, Eychmüller A (2017) Modern Inorganic Aerogels. Angew Chemie Int Ed 56:13200–13221. https://doi.org/10.1002/anie.201611552

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Grant No. 31971605), the International Joint Research Center for Biomass Chemistry and Materials, the Shaanxi International Science and Technology Cooperation Base (2018GHJD-19), the Shandong Key R&D Program (No. 2019JZZY010407 and 2019JZZY010304), the key scientific research plan (Key Laboratory) of Shaanxi Provincial Education Department (No. 17JS016). The Project was also supported by the Foundation (No. KF201814) of the Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sufeng Zhang or Fangong Kong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, S., He, B. et al. Synthesis of cellulose aerogels as promising carriers for drug delivery: a review. Cellulose (2021). https://doi.org/10.1007/s10570-021-03734-9

Download citation

Keywords

  • Cellulose
  • Cellulose aerogels
  • Synthesis
  • Drug delivery carriers