Functionalization of cotton gauzes with poly(N-vinylimidazole) and quaternized poly(N-vinylimidazole) with gamma radiation to produce medical devices with pH-buffering and antimicrobial properties

Abstract

Poly(N-vinylimidazole) and its quaternized counterpart were successfully grafted onto cotton gauzes by performing radical polymerization reactions of N-vinylimidazole using high energy γ-radiation derived from a 60Co radioactive as a clean initiator method. The obtained materials were then characterized by FTIR, DSC, TGA, and SEM to confirm the presence of the functional polymer in the gauzes. Additionally, pH titrations were performed to the solid substrates to evaluate their acid–base properties confirming that the modified gauzes behave as a polyelectrolyte buffer acid–base system with a pKa ≈ 5.6. Furthermore, to evaluate the applicability of the gauzes, elongation tests (ASTM-D5035) were performed to the pristine and the modified gauzes to evaluate their mechanical performance, finding that the mechanical properties of the gauzes were not significantly changed after the modification procedure. Finally, bacterial growth inhibition and hemolysis tests were performed to assess the antimicrobial performance of the gauzes and their biocompatibility, having found that these medical devices are effective in inhibiting the growth of S. aureus while proving non-hemolytic to human erythrocytes.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Availability of data and material

Raw data available through contact with the corresponding author.

Code availability

Not applicable.

Abbreviations

NVIm:

N-Vinylimidazole

PNVIm:

Poly(N-vinylimidazole)

References

  1. Agrawal K, Sarda A, Shrotriya R et al (2017) Acetic acid dressings: finding the holy grail for infected wound management. Indian J Plast Surg 50:273. https://doi.org/10.4103/ijps.IJPS_245_16

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderson EB, Long TE (2010) Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer (Guildf) 51:2447–2454. https://doi.org/10.1016/j.polymer.2010.02.006

    CAS  Article  Google Scholar 

  3. Borukhov I, Andelman D, Borrega R et al (2000) Polyelectrolyte titration: theory and experiment. J Phys Chem 104:11027–11034. https://doi.org/10.1021/jp001892s

    CAS  Article  Google Scholar 

  4. Bowler PG, Duerden BI, Armstrong DG (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14:244–269. https://doi.org/10.1128/CMR.14.2.244-269.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Camacho-Cruz LA, Velazco-Medel MA, Cruz-Gómez A, Bucio E (2021) Antimicrobial polymers. In: Inamuddin AM, Prasad R (eds) Advanced antimicrobial materials and applications. Springer, Singaporep, pp 1–42

    Google Scholar 

  6. Cao Q, Wu S, Wang L et al (2018) Effects of the morphology of sulfobetaine zwitterionic layers grafted onto a silicone surface on improving the hydrophilic stability, anti-bacterial adhesion properties, and biocompatibility. J Appl Polym Sci 135:1–9. https://doi.org/10.1002/app.46860

    CAS  Article  Google Scholar 

  7. Cohen ME, Salmasian H, Li J et al (2017) Surgical antibiotic prophylaxis and risk for postoperative antibiotic-resistant infections. J Am Coll Surg 225:631.e1-638.e3. https://doi.org/10.1016/j.jamcollsurg.2017.08.010

    Article  Google Scholar 

  8. Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. BioMedicine 5:22. https://doi.org/10.7603/s40681-015-0022-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Feng W, Gu W, Zhang L et al (2019) pH-responsive and buffering macromolecule aqueous absorbent and mathematic model-based feasibility evaluation for SO2 capture. Trans Tianjin Univ 25:226–236. https://doi.org/10.1007/s12209-018-0168-0

    CAS  Article  Google Scholar 

  10. Flores-Rojas GG, López-Saucedo F, Vázquez E et al (2020) Synthesis of polyamide-6@cellulose microfilms grafted with N-vinylcaprolactam using gamma-rays and loading of antimicrobial drugs. Cellulose 27:2785–2801. https://doi.org/10.1007/s10570-020-02986-1

    CAS  Article  Google Scholar 

  11. Garcia-Fernandez MJ, Brackman G, Coenye T et al (2013) Antiseptic cyclodextrin-functionalized hydrogels and gauzes for loading and delivery of benzalkonium chloride. Biofouling 29:261–271. https://doi.org/10.1080/08927014.2013.765947

    CAS  Article  PubMed  Google Scholar 

  12. Hiriart-Ramírez E, Contreras-García A, Garcia-Fernandez MJ et al (2012) Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose 19:2165–2177. https://doi.org/10.1007/s10570-012-9782-5

    CAS  Article  Google Scholar 

  13. Horta A, Molina MJ, Gómez-Antón MR, Piérola IF (2008) The pH inside a swollen polyelectrolyte gel: Poly(N-vinylimidazole). J Phys Chem B 112:10123–10129. https://doi.org/10.1021/jp801145g

    CAS  Article  PubMed  Google Scholar 

  14. Jones EM, Cochrane CA, Percival SL (2014) The effect of pH on the extracellular matrix and biofilms. Adv Wound Care 4:431–439. https://doi.org/10.1089/wound.2014.0538

    Article  Google Scholar 

  15. Kazmers NH, Fragomen AT, Rozbruch SR (2016) Prevention of pin site infection in external fixation: a review of the literature. Strateg Trauma Limb Reconstr 11:75–85. https://doi.org/10.1007/s11751-016-0256-4

    Article  Google Scholar 

  16. Kumar V, Bhardwaj YK, Rawat KP, Sabharwal S (2005) Radiation-induced grafting of vinylbenzyltrimethylammonium chloride (VBT) onto cotton fabric and study of its anti-bacterial activities. Radiat Phys Chem 73:175–182. https://doi.org/10.1016/j.radphyschem.2004.08.011

    CAS  Article  Google Scholar 

  17. Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer (Guildf) 54:5087–5103. https://doi.org/10.1016/j.polymer.2013.06.027

    CAS  Article  Google Scholar 

  18. Leaper DJ (1994) Prophylactic and therapeutic role of antibiotics in wound care. Am J Surg 167:15–20. https://doi.org/10.1016/0002-9610(94)90005-1

    Article  Google Scholar 

  19. Lee CK, Chua YP, Saw A (2012) Antimicrobial gauze as a dressing reduces pin site infection: a randomized controlled trial. Clin Orthop Relat Res 470:610–615. https://doi.org/10.1007/s11999-011-1990-z

    CAS  Article  PubMed  Google Scholar 

  20. Li M, Neoh KG, Xu LQ et al (2012) Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir 28:16408–16422. https://doi.org/10.1021/la303438t

    CAS  Article  PubMed  Google Scholar 

  21. Lippert JL, Robertson JA, Havens JR, Tan JS (1985) Structural studies of poly(N-vinylimidazole) complexes by infrared and raman spectroscopy. Macromolecules 18:63–67. https://doi.org/10.1021/ma00143a010

    CAS  Article  Google Scholar 

  22. López-Saucedo F, Flores-Rojas GG, Magariños B et al (2019) Radiation grafting of poly(methyl methacrylate) and poly(vinylimidazole) onto polytetrafluoroethylene films and silver immobilization for antimicrobial performance. Appl Surf Sci 473:951–959. https://doi.org/10.1016/j.apsusc.2018.12.229

    CAS  Article  Google Scholar 

  23. Luna-Straffon MA, Contreras-García A, Brackman G et al (2014) Wound debridement and antibiofilm properties of gamma-ray DMAEMA-grafted onto cotton gauzes. Cellulose 21:3767–3779. https://doi.org/10.1007/s10570-014-0371-7

    CAS  Article  Google Scholar 

  24. McBirney SE, Trinh K, Wong-Beringer A, Armani AM (2016) Wavelength-normalized spectroscopic analysis of Staphylococcus aureus and Pseudomonas aeruginosa growth rates. Biomed Opt Express 7:4034. https://doi.org/10.1364/boe.7.004034

    Article  PubMed  PubMed Central  Google Scholar 

  25. Meléndez-Ortiz HI, Alvarez-Lorenzo C, Burillo G et al (2015) Radiation-grafting of N-vinylimidazole onto silicone rubber for antimicrobial properties. Radiat Phys Chem 110:59–66. https://doi.org/10.1016/j.radphyschem.2015.01.025

    CAS  Article  Google Scholar 

  26. Minko S (2008) Grafting on solid surfaces: “grafting to” and “grafting from” methods. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Berlin, pp 215–234

    Google Scholar 

  27. Molina MJ, Gómez-Antón MR, Piérola IF (2004) Factors driving the protonation of poly( N-vinylimidazole) hydrogels. J Polym Sci Part B Polym Phys 42:2294–2307. https://doi.org/10.1002/polb.20104

    CAS  Article  Google Scholar 

  28. Nagoba BS, Selkar SP, Wadher BJ, Gandhi RC (2013) Acetic acid treatment of pseudomonal wound infections—a review. J Infect Public Health 6:410–415. https://doi.org/10.1016/j.jiph.2013.05.005

    CAS  Article  PubMed  Google Scholar 

  29. Panáček A, Kvítek L, Smékalová M et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13:65–71. https://doi.org/10.1038/s41565-017-0013-y

    CAS  Article  PubMed  Google Scholar 

  30. Quartinello F, Tallian C, Auer J et al (2019) Smart textiles in wound care: functionalization of cotton/PET blends with antimicrobial nanocapsules. J Mater Chem B 7:6592–6603. https://doi.org/10.1039/c9tb01474h

    CAS  Article  PubMed  Google Scholar 

  31. Sarheed O, Ahmed A, Shouqair D, Boateng J (2016) Antimicrobial dressings for improving wound healing. In: Alexandrescu V (ed) Wound healing—new insights into ancient challenges. InTech, London, p 13

    Google Scholar 

  32. Schneider LA, Korber A, Grabbe S, Dissemond J (2007) Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res 298:413–420. https://doi.org/10.1007/s00403-006-0713-x

    Article  PubMed  Google Scholar 

  33. Sheldon AT (2005) Antiseptic “resistance”: real or perceived threat? Clin Infect Dis 40:1650–1656. https://doi.org/10.1086/430063

    CAS  Article  PubMed  Google Scholar 

  34. Velazco-Medel MA, Camacho-Cruz LA, Bucio E (2020) Modification of PDMS with acrylic acid and acrylic acid/ethylene glycol dimethacrylate by simultaneous polymerization assisted by gamma radiation. Radiat Phys Chem 171:108754. https://doi.org/10.1016/j.radphyschem.2020.108754

    CAS  Article  Google Scholar 

  35. Wu Y, Yang Y, Liu H et al (2017) Long-term antibacterial protected cotton fabric coating by controlled release of chlorhexidine gluconate from halloysite nanotubes. RSC Adv 7:18917–18925. https://doi.org/10.1039/c7ra01464c

    CAS  Article  Google Scholar 

  36. Yu D, Xu L, Hu Y et al (2017) Durable antibacterial finishing of cotton fabric based on thiol-epoxy click chemistry. RSC Adv 7:18838–18843. https://doi.org/10.1039/c6ra28803k

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México under Grant IN202320 (Mexico). Thanks to CONACyT for the master’s degree scholarship for Luis Alberto Camacho Cruz (916557) and the doctoral scholarship provided for Marlene Alejandra Velazco Medel (696062/ 583700). The authors thank B. Leal, E. Palacios, and M. Cruz from ICN-UNAM for their technical assistance. The authors thank to A. Camacho from the Department of Microbiology of Faculty of Chemistry at UNAM. The authors thank to I. Puente Lee from USAII-UNAM for the technical assistance for scanning electron microscopy. Additionally, the authors thank to E. Hernández Mecinas and G. Cedillo for the technical assistance with mechanical performance tests and NMR determination, and to C. Alvarez-Lorenzo and A. Concheiro, from Universidade de Santiago de Compostela, Spain, for help with the discussion of the results. L.A. Camacho-Cruz personally expresses his gratitude to Marlene A. Velazco-Medel for her invaluable contibutions on this work and her outstanding commitment.  L.A. Camacho-Cruz personally thanks Jessica Villagrán and Alitzel Cruz for their personal help and friendship. Finally, the authors would like to dedicate this paper to E. Bucio and G. Burillo for their invaluable support for the publication of this paper.

Funding

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México under Grant IN202320 (Mexico). Thanks to CONACyT for the master’s degree scholarship for Luis Alberto Camacho Cruz (916557) and the doctoral scholarship provided for Marlene Alejandra Velazco Medel (696062/ 583700).

Author information

Affiliations

Authors

Contributions

Conceptualization: [LAC]; Methodology: [LAC], [MAV], [HP]; Formal analysis and investigation: [LAC]; Writing—original draft preparation: [LAC]; Writing—review and editing: [LAC], [MAV]; Funding acquisition: [EB]; Resources: [EB], [HP]; Supervision: [EB, HP].

Corresponding author

Correspondence to Emilio Bucio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the supplementary information.

Supplementary material 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camacho-Cruz, L.A., Velazco-Medel, M.A., Parra-Delgado, H. et al. Functionalization of cotton gauzes with poly(N-vinylimidazole) and quaternized poly(N-vinylimidazole) with gamma radiation to produce medical devices with pH-buffering and antimicrobial properties. Cellulose (2021). https://doi.org/10.1007/s10570-021-03725-w

Download citation

Keywords

  • Radiation grafting
  • Antibacterial polymers
  • Cotton gauzes
  • N-vinylimidazole
  • Cationic polymers
  • Polyelectrolytes