Oxidized regenerated celluloses to fabricate high fire safety for epoxy resin with super expansion char layer

Abstract

Recently, oxidized regenerated celluloses has exhibited superior performance as a carbonization agent for polymers. However, it is a major challenge to fabricate fire safety and intumescent flame-retardant polymer composites with high-efficiency, and “heterogeneous char-forming agent (HCA)” is worth pursuing. Herein, regenerated cellulose (RC) was oxidized by H2O2 to achieve oxidized RC (ORC) with high carboxyl content. Interestingly, ORC, the potential HCA, achieved higher catalytic charring effect and lower content of the toxic gas release compared with the presented carbonization agent. 5 wt% ORC and 3.75 wt% microencapsulated ammonium polyphosphate (MFAPP) as intumescent flame retardants (IFR) were utilized to fabricate IFR epoxy resin (EP) (noted as EP/MFAPP/ORC). Amazingly, a super expansion ratio (41.5-fold) intumescent char layer was formed in EP/MFAPP/ORC27 (ORC with 27% carboxyl content) after the cone calorimetry test. Moreover, the peak heat release rate, total heat release and total smoke production of EP/MFAPP/ORC27 largely decreased by 55.6%, 61.8% and 62.2%, respectively. Furthermore, the residual char yield (41.8%) significantly enhanced by 9.7-fold, compared with those of EP. Meanwhile, it achieved 30.3% limiting oxygen index and V-0 burning test, and the flame retardant index (FRI) showed "good" flame-retardant performances. The concept of HCA and flame-retardant mechanism were elaborated by analyzing the evolution process of IFR-EP. These results demonstrate that ORC27, acts as HCA, is a novel and efficient strategy for fabricating fire safety EP with excellent flame-retardant efficiency.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2.
Scheme 3.

References

  1. Alongi J, Di Blasio A, Milnes J, Malucelli G, Bourbigot S, Kandola B, Camino G (2015) Thermal degradation of DNA, an all-in-one natural intumescent flame retardant. Polym Degrad Stab 113:110–118. https://doi.org/10.1016/j.polymdegradstab.2014.11.001

    CAS  Article  Google Scholar 

  2. Alongi J, Ferruti P, Manfredi A, Carosio F, Feng ZX, Hakkarainen M, Ranucci E (2019) Superior flame retardancy of cotton by synergetic effect of cellulose-derived nano-graphene oxide carbon dots and disulphide-containing polyamidoamines. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2019.108993

    Article  Google Scholar 

  3. Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17:2283–2300. https://doi.org/10.1039/b702511d

    CAS  Article  Google Scholar 

  4. Bourbigot S, Le Bras M, Duquesne S, Rochery M (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289:499–511. https://doi.org/10.1002/mame.200400007

    CAS  Article  Google Scholar 

  5. Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers: part II—mechanism of action in polypropylene-ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 7:25–31

    CAS  Article  Google Scholar 

  6. Camino G, Costa L, Trossarelli L (1985) Study of the mechanism of intumescence in fire retardant polymers: part VI—mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 12:213–228. https://doi.org/10.1016/0141-3910(85)90090-4

    CAS  Article  Google Scholar 

  7. Chen YQ, Zhang X, Chen W, Yang HP, Chen HP (2017) The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour Technol 246:101–109. https://doi.org/10.1016/j.biortech.2017.08.138

    CAS  Article  PubMed  Google Scholar 

  8. Costes L, Laoutid F, Brohez S, Dubois P (2017) Bio-based flame retardants: when nature meets fire protection. Mater Sci Eng R 117:1–25. https://doi.org/10.1016/j.mser.2017.04.001

    Article  Google Scholar 

  9. Ding HY, Huang K, Li SH, Xu LN, Xia JL, Li M (2017) Synthesis of a novel phosphorus and nitrogen-containing bio-based polyol and its application in flame retardant polyurethane foam. J Anal Appl Pyrol 128:102–113. https://doi.org/10.1016/j.jaap.2017.10.020

    CAS  Article  Google Scholar 

  10. Feng YZ, He CG, Wen YF, Ye YS, Zhou XP, Xie XL, Mai YW (2018) Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater 346:140–151. https://doi.org/10.1016/j.jhazmat.2017.12.019

    CAS  Article  PubMed  Google Scholar 

  11. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Ence Part C Polym Lett 4(5):323–328. https://doi.org/10.1002/pol.1966.110040504

    CAS  Article  Google Scholar 

  12. Gu H et al (2016) An overview of multifunctional epoxy nanocomposites. J Mater Chem C 4:5890–5906

    CAS  Article  Google Scholar 

  13. Ji XY, Chen DY, Wang QW, Shen JB, Guo SY (2018) Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos Sci Technol 163:49–55. https://doi.org/10.1016/j.compscitech.2018.05.007

    CAS  Article  Google Scholar 

  14. Jian RK, Ai YF, Xia L, Zhao LJ, Zhao HB (2019) Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins. J Hazard Mater 371:529–539. https://doi.org/10.1016/j.jhazmat.2019.03.045

    CAS  Article  PubMed  Google Scholar 

  15. Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026

    CAS  Article  Google Scholar 

  16. Jung D, Bhattacharyya D (2018) Keratinous fiber based intumescent flame retardant with controllable functional compound loading. ACS Sustain Chem Eng 6:13177–13184. https://doi.org/10.1021/acssuschemeng.8b02756

    CAS  Article  Google Scholar 

  17. Kalali EN, Wang X, Wang DY (2015) Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. J Mater Chem A 3:6819–6826. https://doi.org/10.1039/C5TA00010F

    CAS  Article  Google Scholar 

  18. Ke CH et al (2010) Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab 95:763–770. https://doi.org/10.1016/j.polymdegradstab.2010.02.011

    CAS  Article  Google Scholar 

  19. Knoepke LR, Nemati N, Koeckritz A, Brueckner A, Bentrup U (2010) Reaction monitoring of heterogeneously catalyzed hydrogenation of imines by coupled ATR-FTIR, UV/Vis, and Raman spectroscopy. Chemcatchem 2:273–280. https://doi.org/10.1002/cctc.200900273

    CAS  Article  Google Scholar 

  20. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R 63:100–125. https://doi.org/10.1016/j.mser.2008.09.002

    CAS  Article  Google Scholar 

  21. Li XL, Zhang FH, Jian RK, Ai YF, Ma JL, Hui GJ, Wang DY (2019) Influence of eco-friendly calcium gluconate on the intumescent flame-retardant epoxy resin: flame retardancy, smoke suppression and mechanical properties. Compos B Eng 176:107200. https://doi.org/10.1016/j.compositesb.2019.107200

    CAS  Article  Google Scholar 

  22. Liu Y, Zhao J, Deng CL, Chen L, Wang DY, Wang YZ (2011) Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system. Ind Eng Chem Res 50:2047–2054. https://doi.org/10.1021/ie101737n

    CAS  Article  Google Scholar 

  23. Liu Y, Yu Q, Fang Z, Zhang Y (2015) The effect of a novel intumescent flame retardant-functionalized montmorillonite on the thermal stability and flammability of EVA. Polym Polym Compos 23:345–350. https://doi.org/10.1177/096739111502300507

    CAS  Article  Google Scholar 

  24. Manfredi A, Carosio F, Ferruti P, Ranucci E, Alongi J (2018) Linear polyamidoamines as novel biocompatible phosphorus-free surface-confined intumescent flame retardants for cotton fabrics. Polym Degrad Stab 151:52–64. https://doi.org/10.1016/j.polymdegradstab.2018.02.020

    CAS  Article  Google Scholar 

  25. Nie SB, Song L, Guo YQ, Wu K, Xing WY, Lu HD, Hu Y (2009) Intumescent flame retardation of starch containing polypropylene semibiocomposites: flame retardancy and thermal degradation. Ind Eng Chem Res 48:10751–10758. https://doi.org/10.1021/ie9012198

    CAS  Article  Google Scholar 

  26. Nomura A, Jones CW (2013) Amine-functionalized porous silicas as adsorbents for aldehyde abatement. ACS Appl Mater Inter 5:5569–5577. https://doi.org/10.1021/am400810s

    CAS  Article  Google Scholar 

  27. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886. https://doi.org/10.1246/bcsj.38.1881

    CAS  Article  Google Scholar 

  28. Pappalardo S, Russo P, Acierno D, Rabe S, Schartel B (2016) The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur Polym J 76:196–207. https://doi.org/10.1016/j.eurpolymj.2016.01.041

    CAS  Article  Google Scholar 

  29. Peng HQ, Zhang SD, Yin Y, Jiang SH, Mo WJ (2017) Fabrication of c-6 position carboxyl regenerated cotton cellulose by H2O2 and its promotion in flame retardency of epoxy resin. Polym Degrad Stab 142:150–159. https://doi.org/10.1016/j.polymdegradstab.2017.05.026

    CAS  Article  Google Scholar 

  30. Qi DP, Liu Y, Liu ZY, Zhang L, Chen XD (2017) Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv Mater. https://doi.org/10.1002/adma.201602802

    Article  PubMed  Google Scholar 

  31. Shao ZB, Deng C, Tan Y, Yu L, Chen MJ, Chen L, Wang YZ (2014b) Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. J Mater Chem A 2:13955–13965. https://doi.org/10.1039/c4ta02778g

    CAS  Article  Google Scholar 

  32. Shao ZB, Deng C, Tan Y, Chen MJ, Chen L, Wang YZ (2014a) An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. ACS Appl Mater Int 6:7363–7370. https://doi.org/10.1021/am500789q

    CAS  Article  Google Scholar 

  33. Shen ZQ, Chen L, Lin L, Deng CL, Zhao J, Wang YZ (2013) Synergistic effect of layered nanofillers in intumescent flame-retardant epdm: montmorillonite versus layered double hydroxides. Ind Eng Chem Res 52:8454–8463. https://doi.org/10.1021/ie4010546

    CAS  Article  Google Scholar 

  34. Song P, Xu L, Guo Z, Zhang Y, Fang Z (2008) Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 18:5083–5091. https://doi.org/10.1039/b808309f

    CAS  Article  Google Scholar 

  35. Su XQ, Yi YW, Tao J, Qi HQ (2012) Synergistic effect of zinc hydroxystannate with intumescent flame-retardants on fire retardancy and thermal behavior of polypropylene. Polym Degrad Stab 97:2128–2135. https://doi.org/10.1016/j.polymdegradstab.2012.08.017

    CAS  Article  Google Scholar 

  36. Tan Y, Shao ZB, Chen XF, Long JW, Chen L, Wang YZ (2015) Novel multifunctional organic inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS Appl Mater Inter 7:17919–17928. https://doi.org/10.1021/acsami.5b04570

    CAS  Article  Google Scholar 

  37. Tan Y, Shao ZB, Yu LX, Long JW, Qi M, Chen L, Wang YZ (2016a) Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property. Polym Chem UK 7:3003–3012. https://doi.org/10.1039/c6py00434b

    CAS  Article  Google Scholar 

  38. Tan Y, Shao ZB, Yu LX, Xu YJ, Rao WH, Chen L, Wang YZ (2016b) Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: thermal stability, flame retardance and smoke suppression. Polym Degrad Stab 131:62–70. https://doi.org/10.1016/j.polymdegradstab.2016.07.004

    CAS  Article  Google Scholar 

  39. Vahabi H, Kandola BK, Saeb MR (2019) Flame retardancy index for thermoplastic composites. Polymers 11(3):407. https://doi.org/10.3390/polym11030407

    CAS  Article  PubMed Central  Google Scholar 

  40. Vandersall HL (1971) Intumescent coating systems, their development and chemistry. J Fire Flammabl 2(1971):97–140

    CAS  Google Scholar 

  41. Wang X, Hu YA, Song L, Xuan SY, Xing WY, Bai ZM, Lu HD (2011) Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Ind Eng Chem Res 50:713–720. https://doi.org/10.1021/ie1017157

    CAS  Article  Google Scholar 

  42. Wang X, Song L, Yang HY, Xing WY, Kandola B, Hua Y (2012) Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J Mater Chem 22:22037–22043. https://doi.org/10.1039/c2jm35479a

    CAS  Article  Google Scholar 

  43. Wang X, Kalali EN, Wan JT, Wang DY (2017a) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46. https://doi.org/10.1016/j.progpolymsci.2017.02.001

    CAS  Article  Google Scholar 

  44. Wang ZJ, Liu YF, Li J (2017b) Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites. ACS Sustain Chem Eng 5:2375–2383. https://doi.org/10.1021/acssuschemeng.6b02712

    CAS  Article  Google Scholar 

  45. Wang TS, Li LP, Wang QW, Xie GJ, Guo CG (2019) Castor oil based UV-cured coatings using thiol-ene click reaction for thermal degradation with flame retardance. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2019.111798

    Article  Google Scholar 

  46. Wen JH, Yin Y, Peng XF, Zhang SD (2019) Using H2O2 to selectively oxidize recyclable cellulose yarn with high carboxyl content. Cellulose 26:2699–2713. https://doi.org/10.1007/s10570-018-2217-1

    CAS  Article  Google Scholar 

  47. Xing WY, Zhang P, Song L, Wang X, Hu Y (2014) Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating. Mater Res Bull 49:1–6. https://doi.org/10.1016/j.materresbull.2013.08.033

    CAS  Article  Google Scholar 

  48. Xu ZZ, Huang JQ, Chen MJ, Tan Y, Wang YZ (2013) Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polym Degrad Stab 98:2011–2020. https://doi.org/10.1016/j.polymdegradstab.2013.07.010

    CAS  Article  Google Scholar 

  49. Xu L, Liu X, An ZH, Yang R (2019) EG-based coatings for flame retardance of shape stabilized phase change materials. Polym Degrad Stab 161:114–120. https://doi.org/10.1016/j.polymdegradstab.2019.01.020

    CAS  Article  Google Scholar 

  50. Yan YW, Chen L, Jian RK, Kong S, Wang YZ (2012) Intumescence: an effect way to flame retardance and smoke suppression for polystryene. Polym Degrad Stab 97:1423–1431. https://doi.org/10.1016/j.polymdegradstab.2012.05.013

    CAS  Article  Google Scholar 

  51. Yang L, Cheng WL, Zhou J, Li HL, Wang XL, Chen XD, Zhang ZY (2014) Effects of microencapsulated APP-II on the microstructure and flame retardancy of PP/APP-II/PER composites. Polym Degrad Stab 105:150–159. https://doi.org/10.1016/j.polymdegradstab.2014.04.014

    CAS  Article  Google Scholar 

  52. Yang YX, Haurie L, Wen JH, Zhang SD, Ollivier A, Wang DY (2019) Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites. Ind Crop Prod 130:301–309. https://doi.org/10.1016/j.indcrop.2018.12.090

    CAS  Article  Google Scholar 

  53. Yang W et al (2020) Nanoparticles of polydopamine for improving mechanical and flame-retardant properties of an epoxy resin. Compos B Eng. https://doi.org/10.1016/j.compositesb.2020.107828

    Article  Google Scholar 

  54. Zhang SD, Zhang YR, Wang XL, Wang YZ (2009) High carbonyl content oxidized starch prepared by hydrogen peroxide and its thermoplastic application. Starch Starke 61:646–655. https://doi.org/10.1002/star.200900130

    CAS  Article  Google Scholar 

  55. Zhang LX, Liu ZH, Cui GL, Chen LQ (2015a) Biomass-derived materials for electrochemical energy storages. Prog Polym Sci 43:136–164. https://doi.org/10.1016/j.progpolymsci.2014.09.003

    CAS  Article  Google Scholar 

  56. Zhang SD, Liu F, Peng HQ, Peng XF, Jiang SH, Wang JS (2015b) Preparation of novel c-6 position carboxyl corn starch by a green method and its application in flame retardance of epoxy resin. Ind Eng Chem Res 54:11944–11952. https://doi.org/10.1021/acs.iecr.5b03266

    CAS  Article  Google Scholar 

  57. Zhang W, Fina A, Cuttica F, Camino G, Yang RJP (2016) Blowing-out effect in flame retarding epoxy resins: insight by temperature measurements during forced combustion. Polym Degrad Stab 131:82–90. https://doi.org/10.1016/j.polymdegradstab.2016.07.002

    CAS  Article  Google Scholar 

  58. Zhang W, Fina A, Ferraro G, Yang R (2018) FTIR and GCMS analysis of epoxy resin decomposition products feeding the flame during UL 94 standard flammability test. Application to the understanding of the blowing-out effect in epoxy/polyhedral silsesquioxane formulations. J Anal Appl Pyrol 135:271–280. https://doi.org/10.1016/j.jaap.2018.08.026

    CAS  Article  Google Scholar 

  59. Zhang L et al (2019) Nickel metal-organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustain Chem Eng 7:9272–9280. https://doi.org/10.1021/acssuschemeng.9b00174

    CAS  Article  Google Scholar 

  60. Zhao X, Guerrero FR, Llorca J, Wang DYJ (2016) New superefficiently flame-retardant bioplastic poly (lactic acid): flammability, thermal decomposition behavior, and tensile properties. ACS Sustain Chem Eng 4:202–209. https://doi.org/10.1021/acssuschemeng.5b00980

    CAS  Article  Google Scholar 

  61. Zhao D, Wang J, Wang XL, Wang YZ (2018) Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures. Chem Eng J 344:419–430. https://doi.org/10.1016/j.cej.2018.03.102

    CAS  Article  Google Scholar 

  62. Zhou X et al (2019) Design of hierarchical NiCo-LDH@PZS hollow dodecahedron architecture and application in high-performance epoxy resin with excellent fire safety. ACS Appl Mater Int 11:41736–41749. https://doi.org/10.1021/acsami.9b16482

    CAS  Article  Google Scholar 

  63. Zhu ZM, Wang LX, Dong LP (2019) Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin. Polym Degrad Stab 162:129–137. https://doi.org/10.1016/j.polymdegradstab.2019.02.021

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the National Natural Science Foundation of China (No. 51773068), SKL of Bio-Fibers and Eco-Textiles (Qingdao University) K2019-05, and the Fund Research Grant for Science and Technology in Guangzhou (202002030143), China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuidong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2578 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, t., Zhang, S. & Shi, X. Oxidized regenerated celluloses to fabricate high fire safety for epoxy resin with super expansion char layer. Cellulose 28, 2995–3015 (2021). https://doi.org/10.1007/s10570-021-03723-y

Download citation

Keywords

  • Oxidized regenerated cellulose
  • Intumescent flame retardation
  • Epoxy resin
  • Heterogeneous char-forming agent
  • Super expansion ratios