Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: a comprehensive review on chemical treatments

Abstract

Natural cellulosic fibres, such as kenaf, have potential for use as replacement of man-made fibres in polymeric composites. The rapid depletion of synthetic resources, such as petroleum, and the growing consciousness of global environmental problems related to synthetic products push toward the acceptance of natural fibres as biocomposite components. Kenaf (Hibiscus cannabinus L.) is a multipurpose hibiscus species used to make engineered wood, clothing, packing material, rope and twine. Kenaf is essentially made up of cellulose (about 70%), predicting its excellent mechanical performance. Kenaf fibres are chemically treated before mixing with other polymer resins to enhance their fibre properties. Based on the previous literature, the effect of chemical treatment on the dynamic mechanical performance of kenaf cellulosic biocomposites remains unexplored. The present review focuses on the recent works on the influence of major chemical treatments used on kenaf fibre, such as alkaline, silane and acetylation on fabricated biocomposites. The present review also unveils other chemical treatments (e.g. zein and amino acid) and combined treatments on the fibre to improve the biocomposites’ dynamic mechanical behaviour.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Akil HM, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Abu Bakar A (2011) Kenaf fiber reinforced composites: a review. Mater Des 32:4107–4121

    CAS  Article  Google Scholar 

  2. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    CAS  PubMed  Article  Google Scholar 

  3. Ali SSS, Razman MR, Awang A (2020) The nexus of population, GDP growth, electricity generation, electricity consumption and carbon emissions output in Malaysia. Int J Energy Econ Policy 10:84–89

    Article  Google Scholar 

  4. Alsagayar ZS, Rahmat AR, Arsad A, binti Mustaph SNH, (2015) Tensile and flexural properties of montmorillonite nanoclay reinforced epoxy resin composites. Adv Mater Res 1112:373–376

    Article  Google Scholar 

  5. Anuar H, Zuraida A (2011) Thermal properties of injection moulded polylactic acid—kenaf fibre biocomposite. Malays Polym J 6:51–57

    Google Scholar 

  6. Asim M, Paridah MT, Saba N, Jawaid M, Alothman OY, Nasir M, Almutairi Z (2018) Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Compos Struct 202:1330–1338

    Article  Google Scholar 

  7. Asyraf MRM, Ishak MR, Razman MR, Chandrasekar M (2019a) Fundamentals of creep, testing methods and development of test rig for the full-scale crossarm: a review. J Teknol 81:155–164

    Google Scholar 

  8. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N (2019b) Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique. J Mater Res Technol 8:5647–5658

    CAS  Article  Google Scholar 

  9. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N (2020a) Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach. J Mater Res Technol 9:2357–2368

    Article  Google Scholar 

  10. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N, Ilyas RA (2020b) Woods and composites cantilever beam: a comprehensive review of experimental and numerical creep methodologies. J Mater Res Technol 9:6759–6776

    Article  Google Scholar 

  11. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N, Ilyas RA, Rafidah M, Razman MR (2020c) Evaluation of design and simulation of creep test rig for full-scale cross arm structure. Adv Civ Eng 2020:6980918

    Google Scholar 

  12. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N, Rafidah M, Ilyas RA, Razman MR (2020d) Potential application of green composites for cross arm component in transmission tower: A brief review. Int J Polym Sci. https://doi.org/10.1155/2020/8878300

  13. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N, Shahroze RM, Johari AN, Rafidah M, Ilyas RA (2020E) Creep test rig for cantilever beam: fundamentals, prospects and present views. J Mech Eng Sci 14:6869–6887

    CAS  Article  Google Scholar 

  14. Asyraf MRM, Rafidah M, Ishak MR, Sapuan SM, Yidris N, Ilyas RA, Razman MR (2020F) Integration of TRIZ, Morphological Chart and ANP method for development of FRP composite portable fire extinguisher. Polym Compos 41:2917–2932

    CAS  Article  Google Scholar 

  15. Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1—polyester resin matrix. Compos Sci Technol 64:1219–1230

    CAS  Article  Google Scholar 

  16. Bachtiar D, Salit MS, Zainudin E, Abdan K, Dahlan KZHM (2011) Effects of alkaline treatment and a compatibilizing agent on tensile properties of sugar palm fibrereinforced high impact polystyrene composites. BioResources 6:4815–4823

    CAS  Google Scholar 

  17. Bajuri F, Mazlan N, Ishak MR, Imatomi J (2016) Flexural and compressive properties of hybrid kenaf/silica nanoparticles in epoxy composite. Procedia Chem 19:955–960

    CAS  Article  Google Scholar 

  18. Bajuri F, Mazlan N, Ishak MR (2017) Effect of silica nanoparticles in kenaf reinforced epoxy: Flexural and compressive properties. Pertan J Sci Technol 25:1029–1038

    Google Scholar 

  19. Bakar NA, Chee CY, Abdullah LC, Ratnam CT, Ibrahim NA (2015) Thermal and dynamic mechanical properties of grafted kenaf filled poly(vinyl chloride)/ethylene vinyl acetate composites. Mater Des 65:204–211

    Article  CAS  Google Scholar 

  20. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    CAS  Article  Google Scholar 

  21. Chandrasekar M, Ishak MR, Sapuan SM, Leman Z, Jawaid M (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast Rubber Compos 46:119–136

    CAS  Article  Google Scholar 

  22. Cho D, Lee HS, Han SO (2009) Effect of fiber surface modification on the interfacial and mechanical properties of kenaf fiber-reinforced thermoplastic and thermosetting polymer composites. Compos Interfaces 16:711–729

    CAS  Article  Google Scholar 

  23. Chung TJ, Park JW, Lee HJ, Kwon HJ, Kim HJ, Lee YK, Yin Tze WT (2018) The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Appl Sci 8:376

    Article  CAS  Google Scholar 

  24. Datta J, Kopczyńska P (2015) Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind Crops Prod 74:566–576

    CAS  Article  Google Scholar 

  25. Davoodi MM, Sapuan SM, Ahmad D, Ali A, Khalina A, Jonoobi M (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31:4927–4932

    CAS  Article  Google Scholar 

  26. Deeraj BDS, R. H, Jayan JS, Saritha A, Joseph K, (2020) Enhanced visco-elastic and rheological behavior of epoxy composites reinforced with polyimide nanofiber. Nano Struct Nano Objects 21:100421

    CAS  Article  Google Scholar 

  27. Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683

    CAS  Article  Google Scholar 

  28. Dupraz AMP, De Wijn JR, Meer SATVD, De Groot K (1996) Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res 30:231–238

    CAS  PubMed  Article  Google Scholar 

  29. Dynamic Mechanical Analysis (2020). https://www.intertek.com/polymers/testlopedia/dynamic-mechanical-analysis/. Accessed 13 July 2020

  30. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131

    CAS  Article  Google Scholar 

  31. Farahani GN, Ahmad I, Mosadeghzad Z (2012) Effect of fiber content, fiber length and alkali treatment on properties of kenaf fiber/UPR composites based on recycled PET wastes. Polym Plast Technol Eng 51:634–639

    CAS  Article  Google Scholar 

  32. Fiore V, Di Bella G, Valenza A (2015) The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos Part B Eng 68:14–21

    CAS  Article  Google Scholar 

  33. Gaisford S, Kett V, Haines P (2002) Principles of thermal analysis and calorimetry. Royal society of chemistry, Cambridge

    Google Scholar 

  34. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485

    CAS  Article  Google Scholar 

  35. Golar M, Malik A, Muis H, Khairil M, Ali SSS, Razman MR, Awang A (2019) The adaptive-collaborative as a strategy comunications for conflict resolution on the national park. Ecol Environ Conserv 25:352–359

    Google Scholar 

  36. Gopakumar DA, Pai AR, Pottathara YB, Pasquini D, Carlos De Morais L, Luke M, Kalarikkal N, Grohens Y, Thomas S (2018) Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. ACS Appl Mater Interfaces 10:20032–20043

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Guduri BR, Semosa H, Meng YZ (2009) Green composites from woven flax fiber and bio-copolyester. In: 17th ICCM international conferences on composite materials. Edinburgh, UK, pp 27–31

  38. Han YH, Han SO, Cho D, Il KH (2007) Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Compos Interfaces 14:559–578

    CAS  Article  Google Scholar 

  39. Hassan MM, Islam MR, Shehrzade S, Khan MA (2003) Influence of mercerization along with Ultraviolet (UV) and gamma radiation on physical and mechanical properties of jute yarn by grafting with 3-(trimethoxysilyl) propylmethacrylate (silane) and acrylamide under UV radiation. Polym Plast Technol Eng 42:515–531

    CAS  Article  Google Scholar 

  40. Herrera-Franco PJ, Valadez-González A (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Compos Part B Eng 36:597–608

    Article  CAS  Google Scholar 

  41. Herrera-Franco P, Valadez-Gonzalez A, Cervantes-Uc M (1997) Development and characterization of a HDPE-sand-natural fiber composite. Compos Part B Eng 28:331–343

    Article  Google Scholar 

  42. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces 15:169–191

    CAS  Article  Google Scholar 

  43. Ibrahim NA, Yunus MZW, W, Othman M, Abdan K, Hadithon KA, (2010) Poly(lactic acid) (PLA)-reinforced kenaf bast fiber composites: the effect of triacetin. J Reinf Plast Compos 29:1099–1111

    CAS  Article  Google Scholar 

  44. Ifuku S, Morooka S, Morimoto M, Saimoto H (2010) Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules 11:1326–1330

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Ilyas RA, Sapuan SM, Asyraf MRM, Atikah MSN, Ibrahim R, Dele-Afolabia TT (2020) Introduction to biofiller reinforced degradable polymer composites. In: Sapuan SM, Jumaidin R, Hanafi I (eds) Biofiller reinforced biodegradable polymer composites. CRC Press, Boca Raton, pp 1–23

    Google Scholar 

  46. Ilyas RA, Sapuan SM, Atiqah A, Ibrahim R, Abral H, Ishak MR, Zainudin ES, Nurazzi NM, Atikah MSN, Ansari MNM, Asyraf MRM, Supian ABM, Ya H (2020) Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: water barrier properties. Polym Compos 41:459–467

    CAS  Article  Google Scholar 

  47. Ilyas RA, Sapuan SM, Norrrahim MNF, Yasim-Anuar TAT, Kadier A, Kalil MS, Atikah MSN, Ibrahim R, Asrofi M, Abral H, Nazrin A, Syafiq R, Aisyah HA, Asyraf MRM (2020) Nanocellulose/starch biopolymer nanocomposites: processing, manufacturing, and applications. In: Al-Oqla FM, Sapuan SM (eds) Advanced processing, properties, and applications of starch and other bio-based polymers, 1st edn. Elsevier, Amsterdam, pp 65–88

    Google Scholar 

  48. Ilyas RA, Sapuan MS, Norizan MN, Norrrahim MNF, Ibrahim R, Atikah MSN, Huzaifah MRM, Radzi AM, Izwan S, Azammi AMN, Jumaidin R, Ainun ZMA, Atiqah A, Asyraf MRM, Kian LK (2020) Macro to nanoscale natural fiber composites for automotive components: Research, development, and application. In: Sapuan MS, Ilyas RA (eds) Biocomposite and synthetic composites for automotive applications. Woodhead Publishing Series, Amsterdam

    Google Scholar 

  49. Ilyas R, Sapuan S, Atikah M, Asyraf M, Rafiqah SA, Aisyah H, Nurazzi NM, Norrrahim M (2021) Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr ). Text Res J 91:152–167

    CAS  Article  Google Scholar 

  50. Jaafar CNA, Rizal MAM, Zainol I (2018) Effect of kenaf alkalization treatment on morphological and mechanical properties of epoxy/silica/kenaf composite. Int J Eng Technol 7:258–263

    CAS  Article  Google Scholar 

  51. Jacob M, Joseph S, Pothan LA, Thomas S (2005) A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites. Compos Interfaces 12:95–124

    CAS  Article  Google Scholar 

  52. Jawaid M, Abdul Khalil HPS, Hassan A, Dungani R, Hadiyane A (2013) Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos Part B Eng 45:619–624

    CAS  Article  Google Scholar 

  53. Johari AN, Ishak MR, Leman Z, Yusoff MZM, Asyraf MRM (2020) Influence of CaCO3 in pultruded glass fibre/unsaturated polyester composite on flexural creep behaviour using conventional and TTSP methods. Polimery 65:46–54

    Article  Google Scholar 

  54. Johari AN, Ishak MR, Leman Z, Yusoff MZM, Asyraf MRM (2020) Creep behaviour monitoring of short-term duration for fiber-glass reinforced composite cross-arms with unsaturated polyester resin samples using conventional analysis. J Mech Eng Sci 14:7361–7368

    Article  Google Scholar 

  55. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    CAS  Article  Google Scholar 

  56. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    CAS  Article  Google Scholar 

  57. John MJ, Francis B, Varughese KT, Thomas S (2008) Effect of chemical modification on properties of hybrid fiber biocomposites. Compos Part A Appl Sci Manuf 39:352–363

    Article  CAS  Google Scholar 

  58. John MJ, Bellmann C, Anandjiwala RD (2010) Kenaf-polypropylene composites: effect of amphiphilic coupling agent on surface properties of fibres and composites. Carbohydr Polym 82:549–554

    CAS  Article  Google Scholar 

  59. Jonoobi M, Harun J, Shakeri A, Misra M, Oksmand K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639

    CAS  Google Scholar 

  60. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer (Guildf) 37:5139–5149

    CAS  Article  Google Scholar 

  61. Joseph PV, Joseph K, Thomas S (2002) Short sisal fiber reinforced polypropylene composites: the role of interface modification on ultimate properties. Compos Interfaces 9:171–205

    CAS  Article  Google Scholar 

  62. Joy J, Jose C, Yu X, Mathew L, Thomas S, Pilla S (2017) The influence of nanocellulosic fiber, extracted from Helicteres isora, on thermal, wetting and viscoelastic properties of poly(butylene succinate) composites. Cellulose 24:4313–4323

    CAS  Article  Google Scholar 

  63. Karthikeyan N, Kumar SV (2016) Fabrication and analysing the mechanical properties of Kenaf fibre mat reinforced composites. J Chem Pharm Sci 9:3147–3150

    CAS  Google Scholar 

  64. Kosbar LL, Wenzel TJ (2017) Inclusion of synthetic polymers within the curriculum of the ACS certified undergraduate degree. J Chem Educ 94:1599–1602

    CAS  Article  Google Scholar 

  65. Krishna KV, Kanny K (2016) The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Compos Part B Eng 104:111–117

    CAS  Article  Google Scholar 

  66. Kumar M, Mohanty S, Nayak SK, Rahail Parvaiz M (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579

    CAS  Article  Google Scholar 

  68. Liu W, Mohanty AK, Drzal LT, Askel P, Misra M (2004) Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J Mater Sci 39:1051–1054

    CAS  Article  Google Scholar 

  69. Liu W, Mohanty AK, Askeland P, Drzal LT, Misra M (2004) Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer (Guildf) 45:7589–7596

    CAS  Article  Google Scholar 

  70. Liu Y, Lv X, Bao J, Xie J, Tang X, Che J, Ma Y, Tong J (2019) Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydr Polym 218:179–187

    CAS  PubMed  Article  Google Scholar 

  71. Mahdi EM, Tan JC (2016) Dynamic molecular interactions between polyurethane and ZIF-8 in a polymer-MOF nanocomposite: microstructural, thermo-mechanical and viscoelastic effects. Polymer (Guildf) 97:31–43

    CAS  Article  Google Scholar 

  72. Majhi SK, Nayak SK, Mohanty S, Unnikrishnan L (2010) Mechanical and fracture behavior of banana fiber reinforced polylactic acid biocomposites. Int J Plast Technol 14:57–75

    CAS  Article  Google Scholar 

  73. Makarona E, Koutzagioti C, Salmas C, Ntalos G, Skoulikidou MC, Tsamis C (2017) Enhancing wood resistance to humidity with nanostructured ZnO coatings. Nano Struct Nano Objects 10:57–68

    CAS  Article  Google Scholar 

  74. Mansor MR, Sapuan SM, Zainudin ES, Nuraini AA (2014) Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ-Morphological Chart–Analytic Hierarchy Process method. Mater Des 54:473–482

    CAS  Article  Google Scholar 

  75. Mansor MR, Sapuan SM, Hambali A (2015) Conceptual design of kenaf polymer composites automotive spoiler using TRIZ and morphology chart methods. Appl Mech Mater 761:63–67

    Article  Google Scholar 

  76. Mastura MT, Sapuan SM, Mansor MR, Nuraini AA (2017) Conceptual design of a natural fibre-reinforced composite automotive anti-roll bar using a hybrid approach. Int J Adv Manuf Technol 91:2031–2048

    Article  Google Scholar 

  77. Mat Taib R, Ariawan D, Mohd Ishak ZA (2016) Surface characterization of alkali treated kenaf fibers by XPS and AFM. Key Eng Mater 694:29–33

    Article  Google Scholar 

  78. Mazani N, Sapuan SM, Sanyang ML, Atiqah A, Ilyas RA (2019) Design and fabrication of a shoe shelf from kenaf fiber reinforced unsaturated polyester composites. In: Ariffin H, Sapuan SM, Hassan MA (eds) Lignocellulose for future bioeconomy, 1st edn. Elsevier, Amsterdam, pp 315–332

    Google Scholar 

  79. Melo JDD, Carvalho LFM, Medeiros AM, Souto CRO, Paskocimas CA (2012) A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Compos Part B Eng 43:2827–2835

    CAS  Article  Google Scholar 

  80. Mohd Radzuan NA, Tholibon D, Sulong AB, Muhamad N, Haron CHC (2020) New processing technique for biodegradable kenaf composites: a simple alternative to commercial automotive parts. Compos Part B Eng 184:107644

    CAS  Article  Google Scholar 

  81. Mokhothu TH, Guduri BR, Luyt AS (2011) Kenaf fiber-reinforced copolyester biocomposites. Polym Compos 32:2001–2009

    CAS  Article  Google Scholar 

  82. Ndazi BS, Nyahumwa C, Tesha J (2007) Chemical and thermal stability of rice husks against alkali treatment. BioResources 3:1267–1277

    Google Scholar 

  83. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286

    CAS  Article  Google Scholar 

  84. Omran AAB, Mohammed AABA, Sapuan SM, Ilyas RA, Asyraf MRM, Koloor SSR, Petrů M (2021) Micro- and nanocellulose in polymer composite materials: a review. Polymers (Basel) 13:231

    CAS  Article  Google Scholar 

  85. Paul SA, Reussmann T, Mennig G, Lampke T, Pothen LA, Mathew GDG, Joseph K, Thomas S (2007) The role of interface modification on the mechanical properties of injection-moulded composites from commingled polypropylene/banana granules. Compos Interfaces 14:849–867

    CAS  Article  Google Scholar 

  86. Paul SA, Piasta D, Spange S, Pothan LA, Thomas S, Bellmann C (2008) Solvatochromic and electrokinetic studies of banana fibrils prepared from steam-exploded banana fiber. Biomacromolecules 9:1802–1810

    CAS  PubMed  Article  Google Scholar 

  87. Paul SA, Joseph K, Mathew GDG, Pothen LA, Thomas S (2010) Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Compos Part A Appl Sci Manuf 41:1380–1387

    Article  CAS  Google Scholar 

  88. Pothan LA, Zimmermann Y, Thomas S, Spange S (2000) Determination of polarity parameters of chemically modified cellulose fibers by means of the solvatochromic technique. J Polym Sci Part B Polym Phys 38:2546–2553

    CAS  Article  Google Scholar 

  89. Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63:283–293

    CAS  Article  Google Scholar 

  90. Pottathara YB, Bobnar V, Gorgieva S, Grohens Y, Finšgar M, Thomas S, Kokol V (2016) Mechanically strong, flexible and thermally stable graphene oxide/nanocellulosic films with enhanced dielectric properties. RSC Adv 6:49138–49149

    Article  CAS  Google Scholar 

  91. Pottathara YB, Bobnar V, Finšgar M, Grohens Y, Thomas S, Kokol V (2018) Cellulose nanofibrils-reduced graphene oxide xerogels and cryogels for dielectric and electrochemical storage applications. Polymer (Guildf) 147:260–270

    CAS  Article  Google Scholar 

  92. Pottathara YB, Thomas S, Kalarikkal N, Griesser T, Grohens Y, Bobnar V, Finšgar M, Kokol V, Kargl R (2019) UV-Induced reduction of graphene oxide in cellulose nanofibril composites. New J Chem 43:681–688

    CAS  Article  Google Scholar 

  93. Prisacariu C (2011) Polyurethane elastomers: from morphology to mechanical aspects. Springer, Wien

    Google Scholar 

  94. Rashdi AAA, Sapuan SM, Ahmad MMHM, Khalina A (2009) Water absorption and tensile properties of soil buried kenaf fibre reinforced unsaturated polyester composites (KFRUPC). J Food Agric Environ 7:908–911

    CAS  Google Scholar 

  95. Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24:129–135

    CAS  Article  Google Scholar 

  96. Razman MR, Hadi AH, Jahi JM, Idrus S, Mohamed AF, Harman Shah AH (2011) Transformation for better living environment in urban region: application of the principle of transboundary liability and the montreal protocol experiences. Akademika 81:93–102

  97. Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64:629–644

    CAS  Article  Google Scholar 

  98. Saba N, Paridah MT, Jawaid M, Abdan K, Ibrahim NA (2015) Manufacturing and processing of kenaf Fibre-reinforced epoxy composites via different methods. In: Sapuan SM, Jawaid M, Yusof N, Hoque ME (eds) Manufacturing of natural fibre reinforced polymer composites. Springer, New York, pp 101–124

    Google Scholar 

  99. Saba N, Paridah MT, Jawaid M, Abdan K, Ibrahim NA (2015b) Potential utilization of kenaf biomass in different applications. In: Agricultural biomass based potential materials. Springer, pp 1–34

  100. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159

    CAS  Article  Google Scholar 

  101. Saba N, Alothman OY, Almutairi Z, Jawaid M (2019) Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: mechanical and thermomechanical properties. Constr Build Mater 201:138–148

    CAS  Article  Google Scholar 

  102. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sustain Energy Rev 54:533–549

    CAS  Article  Google Scholar 

  103. Sarkawi SS, Eichhorn SJ (2010) A study on deformation micromechanics of kenaf fibre and kenaf/epoxy composite using raman spectroscopy. J Rubber Res 13:59–72

    CAS  Google Scholar 

  104. Seki Y (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater Sci Eng A 508:247–252

    Article  CAS  Google Scholar 

  105. Serizawa S, Inoue K, Iji M (2006) Kenaf-fiber-reinforced poly(lactic acid) used for electronic products. J Appl Polym Sci 100:618–624

    CAS  Article  Google Scholar 

  106. Singh B, Verma A, Gupta M (1998) Studies on adsorptive interaction between natural fiber and coupling agents. J Appl Polym Sci 70:1847–1858

    CAS  Article  Google Scholar 

  107. Siqueira G, Bras J, Dufresne A (2010) Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers (Basel) 2:728–765

    CAS  Article  Google Scholar 

  108. Sis ALM, Ibrahim NA, Yunus WMZW (2013) Effect of (3-aminopropyl)trimethoxysilane on mechanical properties of PLA/PBAT blend reinforced kenaf fiber. Iran Polym J (Engl Ed)) 22:101–108

    CAS  Article  Google Scholar 

  109. Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol 63:861–869

    CAS  Article  Google Scholar 

  110. Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7:295–329

    CAS  Article  Google Scholar 

  111. Sun XF, Sun RC (2002) Comparative study of acetylation of rice straw fiber with or without catalysts. Wood Fiber Sci 34:306–317

    CAS  Google Scholar 

  112. Tawakkal ISMA, Talib RA, Abdan K, Ling CN (2012) Mechanical and physical properties of Kenaf-Derived Cellulose (KDC)-filled polylactic acid (PLA) composites. BioResources 7:1643–1655

    Article  Google Scholar 

  113. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: Can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264

    CAS  Article  Google Scholar 

  114. White GA, Higgins JJ (1964) Growing kenaf for paper. In: Second international kenaf conference proceedings, Palm Beach, Florida, pp 27–40

  115. Wibowo AC, Mohanty AK, Misra M, Drzal LT (2004) Chopped industrial hemp fiber reinforced cellulosic plastic biocomposites: thermomechanical and morphological properties. Ind Eng Chem Res 43:4883–4888

    CAS  Article  Google Scholar 

  116. Yallappa S, Deepthi DR, Yashaswini S, Hamsanandini R, Chandraprasad M, Ashok Kumar S, Hegde G (2017) Natural biowaste of Groundnut shell derived nano carbons: synthesis, characterization and itsin vitro antibacterial activity. Nano Struct Nano Objects 12:84–90

    CAS  Article  Google Scholar 

  117. Zafeiropoulos NE, Vickers PE, Baillie CA, Watts JF (2003) An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR. J Mater Sci 38:3903–3914

    CAS  Article  Google Scholar 

  118. Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S (2017) Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr Polym 163:261–269

    CAS  PubMed  Article  Google Scholar 

  119. Zainuddin S, Mascunra Amir A, Kibi YR, Khairil M, Zarina Syed Zakaria S, Rizal Razman M (2019) Social engineering model of natural resources management of Palu City. J Eng Appl Sci 14:275–279

    Article  Google Scholar 

  120. Zhang Z, Wang P, Wu J (2012) Dynamic mechanical properties of EVA polymer-modified cement paste at early age. Phys Procedia 25:305–310

    Article  CAS  Google Scholar 

  121. Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials (Basel) 6:5171–5198

    Article  Google Scholar 

Download references

Acknowledgments

Authors are very appreciate and thankful to Program Pelajar Cemerlang (PPC2019), Jabatan Perkhidmatan Awam (JPA) and Kursi Rahmah Nawawi for providing scholarship award and financial aids to the principal author to carry out this research project. The authors also would like to thank to Universiti Kebangsaan Malaysia for the financial support through research grant, Dana Pecutan Penerbitan-LESTARI UKM (PP/LESTARI/2020) and XX-2018-008.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. R. M. Asyraf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asyraf, M.R.M., Rafidah, M., Azrina, A. et al. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: a comprehensive review on chemical treatments. Cellulose (2021). https://doi.org/10.1007/s10570-021-03710-3

Download citation

Keywords

  • Kenaf fibre
  • Dynamic mechanical analysis
  • Storage modulus
  • Loss modulus
  • Tan δ
  • SEM